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Context
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European Processor Initiative

General Purpose Processor (RHEA – Arm based) EPI Accelerators (EPAC – RISC-V based)

Out of the scope of this talk

Contact points: 

SiPearl, Atos, CEA, 

Univ. of Bologna, E4, 

Univ. of Pisa, et al.

https://www.european-processor-initiative.eu/

Focus of this talk!

https://www.european-processor-initiative.eu/


EPAC-VEC: RISC-V core “Avispado”
riscv64gcv

 16 kB instruction cache

 32 kB data cache

 Decodes v0.7, v1.0 vector extension

 Full hardware support for unaligned accesses

 Cache coherent (CHI)

 Vector memory accesses (vle, vlse, vlxe, vse, …) 

processed by a dedicated queue (MIQ/LSU)
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Courtesy: 
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EPAC-VEC: Vector processing unit “Vitruvius”

 Implementation

 Long vectors: 256 DP elements

 #Functional Units (FUs) << Vector Length (VL)

 1 vector instruction can take several (32) cycles

 8 Lanes per core

 FMA/lane: 2 DP Flop/cycle

 40 physical registers, some out of order

 Vector length agnostic (VLA) programming and architecture
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📝 F. Minervini, et al. “Vitruvius+: An Area-Efficient RISC-V Decoupled Vector 

Coprocessor for High Performance Computing Applications” [TACO-2022-50]  RISC-V for HPC - ISC23 Workshop, May 25th, 2023 - Hamburg



How wide is “your” vector?
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D1 D2 D3 D4 D5 D6 D7 D8Intel AVX 512

256 DP elements

16 kbits

RISC-V EPAC VEC
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What’s special?

 The scalar in-order RISC-V core can release several requests of cache lines to the main memory

 The core is connected to a Vector Processing Unit (VPU)
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What’s special? – part 2

 Preserve a linear, scalar, portable program

 No need to think about “kernels to offload to the accelerator”

 Vector instructions

 Less instructions (including scalar instructions for controlling a loop)

 Several cycles for a single vector instruction

 Enables overlap: other functional units can do useful work meanwhile

 Makes easier to keep all functional units busy

 Vector accelerator

 Launch a vec. Instruction ~= Launch a kernel (in GPU terms)

 i.e., a few cycle for decoding vs. several cycles for firing up a thread

 Coalescing on load instructions

 Compared to scalar flow, pay overhead of load instruction start-up only once

 Saturate the memory bandwidth with less cores
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We have tools to measure each of these effects
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How do I program it?

Like a standard HPC system!

 Compile your code

 We give you a compiler

 Link libraries

 Write/Submit a job script

 SLURM

 Wait for the results

 Analyse execution traces and study 

how well your code is vectorized

8

Applications

Libraries (FFTW, SpMV, ...)

Scheduler (Slurm)

Compiler (LLVM)

OS (Linux)

Hardware 

(RISC-V self hosted)

Programming Model

(OpenMP, MPI)
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How to take advantage of the V-extension?

 Assembler

 Always a valid option but not the most pleasant

 C/C++ builtins (intrinsics)

 Low-level mapping to the instructions

 Allows embedding it into an existing C/C++ codebase

 Allows relatively quick experimentation

 #pragma omp simd (aka “Guided vectorization”)

 Relies on vectorization capabilities of the compiler

 Usually works but gets complicated if the code calls functions

 Also usable in Fortran

 Autovectorization

 Leave it to the compiler
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What do we do while hardware becomes ready?
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Co-design!!!

What do you mean 

by co-design?



Co-design with EPAC-VEC

 Influence design decisions

 Architecture definition / implementation

 System software (e.g., compiler, libraries)

 Scientific applications

 SDV: Software Development Vehicles
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Software Development Vehicles (SDV)
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Software emulator: Vehave

 Compile using the RISC-V Vector extension (RVV) Compiler

 Obtain a binary with vector instructions 

 Run in a commercial RISC-V platform (scalar CPU)

 Obtain a trace with detailed information about the vectorization
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Commercial RISC-V platform (scalar CPU)
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Software emulator: Vehave

PROS:

 Useful to understand the potential vectorization 
of the code

 Easy to use and accessible with no need of 
hardware infrastructure

 It supports RVV-0.7 and RVV-1.0

 Output compatible with Paraver

CONS:

 Slow

 No information about performance (no timing)
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1st step: study with Vehave

 Compile an application

 Relying on autovectorization, 
with intrinsics, pragmas or assembly

 Study the output of the compiler

 Run with emulation enabled

 Collect execution traces

 Visualize and study traces

 Is the code vectorized?

 Which kind/how many vector instructions?

 Which vector length is used?

 Is there a way to write a “vector friendly” code?

 Can the compiler “do better”?
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1st step: study with Vehave
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FPGA-based Software Development Vehicles

 Same RTL of EPAC mapped into FPGA

 One tile (i.e., single core)

 Running at 50 MHz

 Full HPC software stack and 

execution environment

 Binary compatibility

 Shared storage (NFS)

 Multi-user / Multi-node (via MPI)

 Standard debug and performance analysis tools for HPC
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2nd STEP: Study on FPGA-SDV

 Compile an application

 Relying on autovectorization, 
with intrinsics, pragmas or assembly

 Study the output of the compiler

 Run natively on real hardware

 Full support for I/O, syscalls, hw counter, etc

 Collect execution traces

 Visualize and study traces

 Which “vector CPI” do we achieve?

 What are the most time-consuming phases?

 How are we accessing the memory?

 Can we overlap computation and memory accesses?
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vCPI = 
cycles VPU works

#vector instructions

computePoints uses slow instructions 

(374 cycles per vector instruction, on average!)

fastest vCPI with 

vl=256 is 35 cycles
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3rd step: signal analysis on FPGA-SDV

Integrated Logic Analyser

 Fine grained analysis (at level of instructions) 

is possible

 Graphical representation of timelines

 In depth study can help highlighting:

1. Low usage of the vector unit

 Feedback to the code developer

2. Suboptimal saturation or resources (FU, mem)

 Feedback to the RTL implementation team

3. Suboptimal overlap of instructions

 Feedback to the compiler team 

(improve scheduling)
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Co-design with FPGA-SDV
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We can leverage SDVs to:

 Influence hardware design

 Improve compiler autovectorization

and system-software support

 Study and prepare 

codes and libraries 

for long-vector architectures 
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