
The RISC-V “accelerator” in
EPI

Prof. Jesús Labarta
BSC & UPC

ACM Summer School

Barcelona, August 30th 2022

2

Disclaimer
• About myself

El abuelo cebolleta
ataca de nuevo

3

The EPI FPA Objective
• Components (low power microprocessor technologies) …

• ARM based SoC
• RISCV based accelerator

• … to be combined to target
• HPC
• HPDA
• Emerging

• Automotive
• …

44

The importance of a vision

Established
vendor

EU
Actors

Follower
Important distance

LOTS of energy/€
Difficult to reach

Established
vendor

Established
vendor

Future ? Future
?

Move the future

Can get there at ~ same time ?

Opportunity window ?

Have to make others work for us !
Have to minimize effort required

Thoughts from 2016

5

Three streams

• General purpose
• ARM SVE
• BULL: System integrator  chip integrator  SiPearl

• Accelerator
• RISC-V
• EU design: BSC, Semidynamics, EXTOLL, ETHZ, UNIBO, Chalmers, …

• Automotive
• Infineon, …

66

ZEUS MPPA

eFPGA

FPGA

FPGA

ZEUS ZEUS

ZEUS ZEUS EPAC

HBM
memories

DDR
memories

PCIe gen5
links

HSL
links

D2D links
to adjacent chiplets

EPAC within EPI

EPAC

 ARM-ZEUS GPP core

 EPAC - EPI Accelerator

 MPPA - Multi-Purpose Processing Array

 eFPGA or FPGA - embedded FPGA

 Cryptographic ASIC (EU Sovereignty)

HPC & Emerging …

7

Visions and collaborations
• STX:

• Specific Accelerator devices
• AI
• Stencil

• RVV
• ISA is important, RISC-V Vector
• “Accelerator”

• Easier entry, focus
•  Standard self hosted, general purpose vector SMP

• VRP:
• Extended precision arithmetic

E4

BSC
SMD

FORTH

Chalmers

EXTOLL

ETHZ

FhG

FhG

UNIBO

UNIZ

CEA

8

Objective

• Explain vision, discuss fundamentals, philosophy
or the approach, …

• Show the available environment and how it works
…

• Want to join the effort?

9

The importance of a vision
• Holistic throughput oriented vision

based on long vectors and task
based models

• Hierarchical concurrency and
locality exploitation

• Not massive concurrency at a given
level

• Push behaviour exploitation to low
levels

• Co-ordination between levels
• Make it all look very close to

classical sequential programming to
ensure productivity

Towards
Holistic
Co-design

1111

Holistic co-design

CPUs/GPUs/ASICs

HW Systems

OS

Compiler/Toolchain

Schedulers

Libraries/Platforms

Applications “As above, so below”
Similar concepts/mechanisms at all levels

“Steered by a vision/principles”
“Steered by detailed insight”

Co-desing vs. Design

1212

Holistic Co-design

Best place to address an issue

Fundamentals

Balance

Mindset

Productivity

Efficiency

CPUs/GPUs/ASICs

HW Systems

OS

Compiler/Toolchain

Schedulers

Libraries/Platforms

Applications

1313

Holistic Co-design

Best place to address an issue

Fundamentals

Balance

Mindset

Productivity

Efficiency

CPUs/GPUs/ASICs

HW Systems

OS

Compiler/Toolchain

Schedulers

Libraries/Platforms

Applications

CPUs/GPUs/ASICs

HW Systems

OS

Compiler/Toolchain

Schedulers

Libraries/Platforms

Applications

CL
O

SE
D

O
PE

N

1414

Leverage interfaces and
implementations

MPI

Leverage “standards”
Opportunity to innovate

and contributeCPUs/GPUs/ASICs

HW Systems

OS

Compiler/Toolchain

Schedulers

Libraries/Platforms

Applications

CL
O

SE
D

O
PE

N

1515

Leverage interfaces and
implementations

MPI

Leverage “standards”
Opportunity to innovate

and contributeCPUs/GPUs/ASICs

HW Systems

OS

Compiler/Toolchain

Schedulers

Libraries/Platforms

Applications

O
PE

N

16

Principles ?

17

Balanced hierarchy

CPUs/GPUs/ASICs

HW Systems

OS

Compiler/Toolchain

Schedulers

Libraries/Platforms

Applications

256 elements. 8 lanes per core
“Limited” number of “general purpose” control flows within tile

Workflow

MPI

OpenMP

Accelerator
specific

vectors

Expression &
exploitation of

Parallelism

106 = 1 × 106 = 10 × 105 = 102 × 102 × 102

Long vectors

18

Latency  Throughput: asynchrony
and overlap

CPUs/GPUs/ASICs

HW Systems

OS

Compiler/Toolchain

Schedulers

Libraries/Platforms

Applications

Task based models

 Single mechanism
 Concurrency

 Locality & data
management

Interoperability MPI + OpenMP

 Taskify MPI calls

 decouple Front end – back end

 Convey access pattern semantics to the architecture. Potential to optimize memory throughput:

Long vectors

Task based
computational
workflows

19

Malleability & Coordinated scheduling

A wish:
Handoff scheduling

CPUs/GPUs/ASICs

HW Systems

OS

Compiler/Toolchain

Schedulers

Libraries/Platforms

Applications

Co
or

di
na

tio
n

(p
ol

ic
ie

s)
Co

m
po

sa
bi

lit
y,

in
te

ro
pe

ra
bi

lit
y

(s
em

an
tic

 im
pe

da
nc

e
m

at
ch

in
g)

Vector Length Agnostic (VLA)
programming and architecture

ISA

20

Homogenizing Heterogeneity

CPUs/GPUs/ASICs

HW Systems

OS

Compiler/Toolchain

Schedulers

Libraries/Platforms

Applications

 Offload regular OpenMP

 HW support: IO coherence

VLA helps homogenize Heterogeneous Performance

Nested tasked/workshared

 ~ Big – Little cores, ….

21

Long vectors
• Raise ISA semantic level

• Vector instructions == tasks
• “less words, more work”
• The importance of ISA

• Parallelism: Asynchrony and overlap
• Decouple Front end – back end

• Less pressure, throughput orientation
• OoO execution

• Locality management
• Hierarchy concept & hints

• Osmotic membrane
• Convey access pattern semantics to the architecture.
• Potential to optimize memory throughput

Applications

Runtime

PM: High-level, clean, abstract interface

ISA / API

an enabler

22

Detailed analysis and Insight on
behavior

LRU Stack distance (colored by instr)

Instr timing (colored by instr)

CPUs/GPUs/ASICs

HW Systems

OS

Compiler/Toolchain

Schedulers

Libraries/Platforms

Applications

Access pattern (colored by PC)

EPAC overall design

2424

“Original EPAC Architecture”

ACCEL. CORE

ACCEL. TILE

L3$

GPP NoC adpter

Accel NOC

SPM

NTXNTXNTX STEN

L1$

L2$

TLB

LSU

Scalar core

Specialized
Units

Vector
Processor

ACCEL. CORE

VLSU Vector
lane

Vector
laneVector

lanes

VRF

DMA

Memory mapped device

2525

EPAC architecture

 RV64GCV ( 8x)

 2 way in order core

 Decoupled VPU

 8 lanes

 Long vectors (256 DP elements)

  128 MSHR

 L1 - MESI coherency

 CHI interface NoC

 1 line / cycle

 L2$: 256KB/module

 Allocation control mechanisms

 No in tile L3$

RVV

 DL and stencil specific accelerators

 Extensions to planned NTX

 Programmable address generators 

 lightweight RISC-v core + fat FPU + (Streaming Semantics & FREP)

STX

 Variable precision processors

VRP

2626

EPI: A highly heterogeneous/hierarchical
system

GPP
-

ARMs

EPAC

Vector
Core

L2
NTX

SPM

Small RISC-
V core

DMA

Bridge

Memory

EPI

2727

EPI: A highly heterogeneous/hierarchical
system

28

Focus on …
• RISCV Long Vector
• Accelerator …. or not

Vector
Core

L2Bridge

Memory

29

RVV VLA programming

void axpy_intrinsics (double a, double *dx, double *dy, int n) {
int i;
int gvl = __builtin_epi_vsetvl(n, __epi_e64, __epi_m1);
__epi_1xf64 v_a = __builtin_epi_vbroadcast_1xf64(a, gvl);

for (i=0; i<n;) {
gvl = __builtin_epi_vsetvl(n - i, __epi_e64, __epi_m1);
__epi_1xf64 v_dx = __builtin_epi_vload_1xf64(&dx[i], gvl);
__epi_1xf64 v_dy = __builtin_epi_vload_1xf64(&dy[i], gvl);
__epi_1xf64 v_res = __builtin_epi_vfmacc_1xf64(v_dy, v_a, v_dx, gvl);
__builtin_epi_vstore_1xf64(&dy[i], v_res, gvl);
i += gvl;

}
}

30

RVV VLA programming

void axpy_intrinsics (double a, double *dx, double *dy, int n) {
int i;
int gvl = __builtin_epi_vsetvl(n, __epi_e64, __epi_m1);
__epi_1xf64 v_a = __builtin_epi_vbroadcast_1xf64(a, gvl);

for (i=0; i<n;) {
gvl = __builtin_epi_vsetvl(n - i, __epi_e64, __epi_m1);
__epi_1xf64 v_dx = __builtin_epi_vload_1xf64(&dx[i], gvl);
__epi_1xf64 v_dy = __builtin_epi_vload_1xf64(&dy[i], gvl);
__epi_1xf64 v_res = __builtin_epi_vfmacc_1xf64(v_dy, v_a, v_dx, gvl);
__builtin_epi_vstore_1xf64(&dy[i], v_res, gvl);
i += gvl;

}
}

Execution on ideal machine

Execution on
practical machine
(finite MAXVL)

31

EPAC decoupled execution

Ops/cycle

In order

Limited OoO

Concurrent
execution on
different
types of
resources

“Sporadic”
dependences
(try to minimize)

semidynamics

AVISPADO 220 with VPU
RISCV64GCV

INT

FP

MIQ

GIQ

VFIQ

64B 8B

PC I$

ITLB

BP

Queue Dec 2i
D$DTLB AlignvAGU

Gazzillion

Coherent
Interface

• SV48
• 16KB I$
• Decodes upcoming V1.0 vector spec
• 32KB D$
• Full hardware support for unaligned accesses
• Coherent (CHI)
• Vector Memory (vle, vlse, vlxe, vse, …) processed by MIQ/LSU

3rd PARTY VPU

O
V
I

Courtesy R. Espasa.

33

VPU: A processor in itself
• Hierarchical “accelerator” integration

• Program & data served by scalar core (Coherence; ~punch tape program )
• Fine grain “offloading” of “vector tasks” (directly hardware supported)
• Homogenized heterogeneity under single “standard” ISA interface defining

program order

• Implementation
• #FUs << VL (lanes=8, VL=256)
• Some OoO

• Resources to overlap?
• L/S, FU, shuffling

• Renaming
• 40 physical registers

• Single ported register file
• Large state
• 5 banks/lane providing sufficient bandwidth for 1 op/cycle (latency/BW trading)

• Data shuffling: directional ring
“Vitruvius: An Area-Efficient Decoupled Vector Accelerator for High Performance Computing”

F. Minervini, O. Palomar. RISC-V Summit 2021

34

A bit on state hierarchy & locality

320 B/c /8 FUs32 B/c /FU

SLC

L3

L2

L1 L1
R R

L2

…

SLC

L2

L1
R VR

L1
R VR

…
LD; OP, ST

OP (R1, R2,…)
NO indirection 
Renaming 

Useful ?

Locality @ very close to Fus
Utilization ?  Unroll

Locality
Management?

Vector
Latency
tolerance ?

A more efficient way to use “comparable” amount of resources with less control flows ?

Test Chip & Software
Development
Vehicles (SDVs)

36

STX

Avispado
VPU

L2 HN

Avispado
VPU

L2 HN

Avispado
VPU

L2 HN

Avispado
VPU

L2 HNSTX

VRP serdes serdes
FPGA
Bridge

Physical design
• 4 “VPU microtiles”

• 2.517 mm2 each

L2

Vector register file (8 lanes)

3737

EPAC Test Chip

~25x
while only 8x FPUs
 Long vectors !!
Memory Bandwidth



VRP

copy scale add triad

1.4 GHz

38

RVV @ FPGA & ecosystem
• HPC software stack @

Commercially available RISC-V
platforms

• SLURM, MPI, OpenMP, BSC
tools, RVV software emulator

• EPI SDV platforms
• Linux
• Test user codes @ real RTL
• Give to EPI partners and

external users early access to
EPI technology

• Holistic CI/CD framework
• HW & SW
• Functionality & performance

RISCV Vector Linux Node

VCU 128 dev kit

UART

DDR4
ctrl

CHI
2

AXI
1GB ETH

PCIe

AXI
Xbar

Co
nf

ig
. S

ta
tu

s
Re

gs
.

FPGA V37P

Avispado
32K$

VPU
8 lanes

64B
/cyc
le

HN – L2
256KB

HN – L2
256KB

HN – L2
256KB

HN – L2
256KB

NOC

64B
/cyc
le

PLICDM CLINT

RISCV scalar

Network

Network
Filesystem

RTL Repo
Operations NFS

Contact : filippo.mantovani@bsc.es

Self hosted RVV node @50MHz

Scalar RV cores @1.2GHz

39

RISC-V Vector extension (RVV) Compiler
• LLVM support for the evolution of the

RISC-V Vector (RVV) Extension

• Intrinsics
• Vectorization/SIMD clauses
• Autovectorization

Support EPAC RTL
SDV@FPGA / Test Chip

V0.7

V0.8/0.9

v1.0

Support EPAC RTL
SDV3/EPAC2.0

4040

SDV flows

C
code

LLVM
compiler

RVV
binary

More info:
https://repo.hca.bsc.es/gitlab/epi-public/risc-v-vector-simulation-environment

Vehave emulator
@ scalar RV/QEMU .prv

MUSA

.prv

timing

Extrae

.prv

ILA2prv

.prv

.ila

RVV @ FPGA
(50 MHz)

ILA

PAPI

sampling Clustering
folding

App development & Data acquisition Analysis

41

SDV@FPGA – vector performance
• EPAC – RVV vs. state of the art

SpMV

Jacobi 2D
“Stream”

FFT

HACC

42

Observed Memory Bandwidth
• Single core Load, Store, Copy
• Comparison to scalar and other architectures
• Comparison to their architectural peak

43

Continuous Co-design
FPGA 50 MHz vs ASIC 1 GHz

Axpy

44

Continuous Co-design
• Daxpy

45

Continuous Co-design
• SpMV

• MKL / NLC / Ellpack based implementation

Gather performance ?
SDV limited to 8 B/c

Scalar
performance ?

46

Continuous Co-design
• FFT

47

Continuous Co-design
• FFT

Instruction
scheduling

48

Continuous Co-design
• HACC

Compiler vectorization:
Relevant technique?

Why?

49

Bolt
Intel (2.5GHz): 0.0303 s
Unmatched (1.2GHz): 0.1634 s
SDV Scalar (50MHz): 5.8462 s
SDV Vector (50MHz): 3.7104 s

Vector in HPC and beyond

• Climate dwarfs
• TFLite
• Containers
• PyCOMPSs
• Spark

• BLIS • Ginkgo

• Pytorch
• PostgressSQL

• Sorting

Yolo
Scalar: 1035.505 s
Vector: 29.377 s

@vehave. WIP: backporting vectorization to 0.7

• GROMACS
• EC-EARTH
• oneDNN

Linpack

RF Frontend

Tx

Rx

Window
+

Doppler FFT

Beamforming,
Thresholding,

Peak Detection

DoA Estimation
Azimuth +
Elevation

Clustering,
tracking etc.

Radar Sensor

Sensor Fusion /
Actuator

Window
+

Range FFT

Thanks

51

EPI PARTNERS

52

EPI FUNDING

This project has received funding from the European High Performance
Computing Joint Undertaking (JU) under Framework Partnership Agreement
No 800928 and Specific Grant Agreement No 101036168 EPI-SGA2.
The JU receives support from the European Union’s Horizon 2020 research
and innovation programme and from Croatia, France, Germany, Greece, Italy,
Netherlands, Portugal, Spain, Sweden, and Switzerland. The EPI-SGA2
project, PCI2022-132935 is also co-funded by MCIN/AEI
/10.13039/501100011033 and by the UE NextGenerationEU/PRTR.

	��The RISC-V “accelerator” in EPI��
	Disclaimer
	The EPI FPA Objective
	The importance of a vision
	Three streams
	EPAC within EPI
	Visions and collaborations
	Objective
	The importance of a vision
	Towards �Holistic �Co-design
	Holistic co-design
	Holistic Co-design
	Holistic Co-design
	Leverage interfaces and implementations
	Leverage interfaces and implementations
	Principles ?
	Balanced hierarchy
	Latency  Throughput: asynchrony and overlap
	Malleability & Coordinated scheduling
	Homogenizing Heterogeneity
	Long vectors
	Detailed analysis and Insight on behavior
	EPAC overall design
	“Original EPAC Architecture”
	EPAC architecture�
	EPI: A highly heterogeneous/hierarchical system
	EPI: A highly heterogeneous/hierarchical system
	Focus on …
	RVV VLA programming
	RVV VLA programming
	EPAC decoupled execution
	AVISPADO 220 with VPU�RISCV64GCV
	VPU: A processor in itself
	A bit on state hierarchy & locality
	Test Chip & Software Development Vehicles (SDVs)
	Physical design
	EPAC Test Chip
	RVV @ FPGA & ecosystem
	RISC-V Vector extension (RVV) Compiler
	SDV flows
	SDV@FPGA – vector performance
	Observed Memory Bandwidth
	Continuous Co-design
	Continuous Co-design
	Continuous Co-design
	Continuous Co-design
	Continuous Co-design
	Continuous Co-design
	Vector in HPC and beyond
	Thanks
	EPI PARTNERS
	EPI FUNDING

