

Unified Posit/IEEE-754 Vector MAC Unit for Transprecision Computing

Luís Crespo; Pedro Tomás; Nuno Roma; Nuno Neves

INESC-ID and Instituto Superior Técnico, Universidade de Lisboa, in Lisbon, Portugal

2022 IEEE International Symposium on Circuits and Systems May 28- June 1, 2022 Hybrid Conference

Outline

Introduction

- Proposed Architecture
 - Overview
 - Vector Structures
 - Unified Decode and Encode
 - Quire Scale and Accumulate
- Implementation Results

Conclusion

Introduction

- Transprecision for performance and energy efficiency demands
- Different precisions by instantiating multiple arithmetic modules
- Vectorized Datapath
 - Different precisions with the same hardware resources
 - SIMD capabilities
 - Limited by the IEEE-754 standard

Introduction

- Posit Format
 - Parameterizable precision and dynamic range <n, es>
 - low-precision and fused operations (quire)
 - $(-1)^S \times 2^{e+k2^{es}} \times 1.f$

- Prohibitive overheads with quire
- Maintain compatibility with IEEE-754

Proposed Architecture - Overview

- Floating-Point format unification
 - $(-1)^S \times 2^{\mathrm{sf}} \times 1.f$
- Variable-precision MAC architecture with dynamic vectorization
 - 1x32-bit, 2x16-bit, and 4x8-bit vector operations
- Variable-exponent Posit configuration
 - Reduced quire
- Dynamically configurable

Proposed Architecture - Overview

vec - vector or scalar .fmt - format (Posit/IEEE-754)

.es - posit exp. size

- Precision
- Operation
- Vector or scalar
- Format
- Posit exponent size

vector data signals

-=

Proposed Architecture - Vector Structures

- Vectorized adder
 - Strategically placed multiplexers
 - Sub-adder carry-in is the carry-out or the input carry-in
- Vectorized barrel shifter
 - One shifting level for each vector configuration
 - Cropped or OR'ed with the adjacent vector element
- Vectorized LZC
 - Tree-like structure
 - Capture intermediate results
- Vectorized radix-4 Booth multiplier

Proposed Architecture - Unified Decode and Encode

Proposed Architecture - Unified Decode and Encode

A. Unified Floating-Point Decode

B. Unified Floating-Point Encode

Proposed Architecture - Quire Scale and Accumulate

Proposed Architecture - Quire Scale and Accumulate

- Conversion
 - Shift amount cannot be greater than the integer size
 - Saturates the shifting amount
 - No right shift

- Alignment
 - Determine operand with lower scale factor
 - Shift it by the difference

Implementation Results

UNIT	NUM.	PIPEL.	ASIC	DELAY	AREA	POWER	PERF.	AREA EFF.	EDP
	BITS	STAGES	ТЕСН.	(<i>ns</i>)	(μm^2)	(mW)	(GOPS)	$(\times 10^{-6} \text{ GOPS}/\mu m^2)$	$(\times 10^{-22} J.s)$
Ref. Posit Std. MAC	8	5	28 nm	0.65	7598	21	1.54	202.4	0.89
Ref. Posit Std. MAC	16	5	28 nm	0.8	17384	47	1.25	71.91	3.01
Ref. Posit Std. MAC	32	5	28 nm	0.91	39767	108	1.10	27.63	8.94
Proposed VMAC	8/16/32	6	28 nm	1.5	51563	99	2.7/1.3/0.7	51.7/25.7/12.9	5.6/11.1/22.3
Posit DFMA [10]	32	5	45 nm	1.5	112350	370	0.67	5.95	83.25
FP VFMA [13]	16/32/64	3	90 <i>nm</i>	1.5	180610	44	2.7/1.3/0.7	14.8/7.4/3.7	2.5/4.9/9.9
Posit VMULT [14]	8/16/32	-	90 <i>nm</i>	2.3	91861	64	1.7/0.9/0.4	18.9/9.5/4.7	8.5/16.9/33.9

• Vs 32-bit Posit MAC

- 30% area increase, similar power consumption
- More area- and energy-efficient
- Vs transprecision architecture estimation
 - 50% less area and 2.9x less power

Implementation Results

Unit	NUM.	PIPEL.	RESULT	DELAY	AREA	POWER
UNII	BITS	STAGES	SOURCE	<i>(ns)</i>	(μm^2)	(mW)
Proposed VMAC	8/16/32	6	Synthesis	1.5	51563	99
Posit DFMA [10]	32	5	Estimated	1.24	39324	266
FP VFMA [13]	16/32/64	3	Estimated	0.77	16044	21
Posit VMULT [14]	8/16/32	-	Estimated	1.18	8160	31

• Vs DFMA

- HW requirements mitigated by the 128 bits quire
- Vs VFMA and VMULT
 - Decoding, encoding, quire (50%) and pipeline increase HW requirements
- VMAC presents a much higher functionality

Conclusion

- Variable-precision datapath with SIMD processing capabilities
- Low- and high-precision operations
- Unique support for Posit and IEEE-754
- Dynamic exponent and reduced quire
- Without requiring a prohibitive chip area size
- Higher functionality

Q&A

2022 IEEE International Symposium on Circuits and Systems May 28- June 1, 2022 Hybrid Conference

