
www.inesc-id.pt

Unlimited Vector Extension with Data Streaming Support
Joao Mario Domingos1, Nuno Neves1,2, Nuno Roma1, Pedro Tomás1

1INESC-ID, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
2Instituto de Telecomunicações, Coimbra, Portugal

Summary

Unlimited vector extension (UVE) is a novel instruction set architecture extension that takes streaming and

SIMD processing together into the modern computing scenario. It aims to overcome the shortcomings of

state-of-the-art scalable vector extensions by adding data streaming as a way to simultaneously reduce the

overheads associated with loop control and memory access indexing, as well as with memory access latency.

This is achieved through a new set of instructions that pre-configure the loop memory access patterns. These

attain accurate and timely data prefetching on predictable access patterns, such as in multidimensional arrays

or in indirect memory access patterns. Each of the configured data streams is associated to a general-

purpose vector register, which is then used to interface with the streams. In particular, iterating over a given

stream is simply achieved by reading/writing to the corresponding input/output stream, as the data is instantly

consumed/produced.

To evaluate the proposed UVE, a proof-of-concept gem5 implementation was integrated in an out-of-order

processor model, based on the ARM Cortex-A76, thus taking into consideration the typical speculative and

out-of-order execution paradigms found in high-performance computing processors. The evaluation was

carried out with a set of representative kernels, by assessing the number of executed instructions, its impact

on the memory bus and its overall performance. Compared to other state-of-the-art solutions, such as the

ARM Scalable Vector Extension (SVE), the obtained results show that the proposed extension attains average

performance speedups over 2.4x for the same processor configuration, including vector length.

nuno.neves@inesc-id.pt

CONTACT US

Funded by:

Read the Paper!

Acknowledgments: This work was partially supported by national funds through Fundação para a Ciência e a Tecnologia (FCT) under projects UIDB/50021/2020 and PTDC/EEI-

HAC/30485/2017, and by funds from the European Union Horizon 2020 Research and Innovation programme under grant agreement No. 826647.

Data Streaming Model

In the UVE streaming model, a stream is defined as a predicable n-

dimensional sequence of data that is transferred between the memory

and the processor.

Memory access modeling and description

UVE adopts a compiler-friendly memory access representation model

that combines nested loop-based indexing and loop- or data-

dependent (indirect) index dynamic ranges into an n-dimensional affine

function:

Each stream access (y) is represented as the sum of a base address

with per-dimension (k) pairs of indexing variables (x - within a range

defined by the loop header) and stride multiplication factors (S).

Background and Motivation

Vector-length agnostic SIMD limitations

• Conventional SIMD extensions operate with fixed-size registers (e.g., Intel AVX, ARM NEON).

• Recent vector-length agnostic (VLA) SIMD extensions (e.g., ARM SVE and RISC-V RVV) abstract the

physical vector register size in the source code, allowing different processors to adopt distinct vector sizes,

while requiring no code modifications.

• VLA extensions impose non-negligible loop overheads with predicate (ARM SVE) and vector configuration

instructions (RVV) to both control the loop iteration and to disable vector elements outside loop bounds.

The Unlimited Vector Extension (UVE)

• Memory Access Decoupling – Adoption of a stream-based paradigm to directly

stream data to the register file, decoupling memory accesses from computation,

and allowing data load/store to occur in parallel with data manipulation.

• Indexing-free loops – Memory access patterns (for each load/store) are exactly described at the loop

preamble, effectively removing memory access and address calculation instructions from the code,

accelerating the loop.

• Simplified vectorization – Transparent scatter-gather operations for complex, multi-dimensional, strided,

and indirect patterns are performed by a Streaming Engine, transforming non-coalesced accesses into

linear patterns automatically aligned for vectorization.

• Implicit load/store – Each active data stream is associated with a different vector register, allowing

reading/writing to/from the register to automatically trigger the input/output (load/store) stream iteration,

without additional stream stepping instructions.

• Register-size agnostic - UVE code is agnostic to the register size. Operations over out-of-bound

elements (e.g., when the number of elements to process is not a multiple of the vector length) is prevented

by automatically disabling all vector register elements that fall out of bounds, according to stream iteration.

• Each stream is represented by a hardware-friendly

hierarchical descriptor representation that encodes the

variables of each affine function dimension.

• Combines multiple functions to represent complex,

dynamic, and/or indirect access patterns.

UVE RISC-V Extension*
UVE currently features a RISC-V instruction extension

with 450 instructions comprising integer, floating-point

and memory (including streaming) instructions, including

support for:

- Stream configuration

- Stream control

- Vector register predication

- Loop control

- Vector manipulation

- Scalar processing

UVE Microarchitecture Support

The proposed UVE provides a processor base architecture extension 

comprising inclusion of:

1. 32 stream vector registers with configurable size.

2. A streaming interface to associate each register with a data stream 

and perform its iteration.

3. 16 predicate registers to handle conditional code.

4. Register and stream renaming to support speculative execution.

5. Support for commit and squash of streams to handle miss-

speculation and commit events.

Streaming Engine
The UVE Streaming Engine is responsible for managing

all input and output streams.

Its architecture is composed of:

• A Stream Configuration module that accepts

stream descriptors from the loop preamble

• A Stream Table that maintains all stream

information and iteration state

• A Stream Scheduler responsible for the selection

and issuing of stream descriptors

• Stream Load/Store Processing Modules that

perform the descriptor iteration and address

generation

• Load/Store FIFOs and Memory Request

Queues responsible for hold outstanding memory

requests and storing input/output stream data

Experimental Setup

• Modified Gem5 simulator to support the proposed

UVE microarchitecture and streaming engine.

• Comparison with baseline simulator configurations

emulating an ARM Cortex-A76 with NEON and

SVE support.

• Selection of representative benchmarks from

several application domains, such as memory,

linear algebra/BLAS, stencil, data mining, dynamic

programming, and n-body (physics) systems.

Results, Conclusions, and Future Work

• Memory access linearization provides improved vectorization capabilities over the ARM compiler

allowing the vectorization of a wider range of complex loop patterns.

• Average performance improvement by 2.4x over ARM SVE:

• Loop acceleration through code size reduction, with an average 60.9% less committed instructions.

• Significant load-to-use latency reduction, resulting from the streaming engine preemptive and

autonomous data acquisition to the vector registers.

• Increased effective memory bandwidth utilization, from the streaming infrastructure management and

data buffering.

• UVE imposes minimal hardware impacts with the inclusion of the Streaming Engine (with an estimated

footprint close to ½ of an L1 cache).

• Hardware prototypes currently under development, targeting modern processor pipelines and dedicated

acceleration frameworks.

*Compilation methods for UVE and stream-based 

extensions are already under development.

Check the paper here


