TECNICO
L ISBOA

lisboa

DEFINING TECHNOLOGY

it
g

Instituto de
telecomunicacoes

Funded by:

Unlimited Vector Extension with Data Streaming Support

Joao Mario Domingos?, Nuno Neves'<, Nuno Romal, Pedro Tomas!?

IINESC-ID, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
2Instituto de Telecomunicacdes, Coimbra, Portugal

-

Summary

consumed/produced.

_

Unlimited vector extension (UVE) is a novel instruction set architecture extension that takes streaming and
SIMD processing together into the modern computing scenario. It aims to overcome the shortcomings of
state-of-the-art scalable vector extensions by adding data streaming as a way to simultaneously reduce the
overheads associated with loop control and memory access indexing, as well as with memory access latency.
This is achieved through a new set of instructions that pre-configure the loop memory access patterns. These
attain accurate and timely data prefetching on predictable access patterns, such as in multidimensional arrays
or in indirect memory access patterns. Each of the configured data streams is associated to a general-
purpose vector register, which is then used to interface with the streams. In particular, iterating over a given
stream is simply achieved by reading/writing to the corresponding input/output stream, as the data is instantly

To evaluate the proposed UVE, a proof-of-concept gem5 implementation was integrated in an out-of-order
processor model, based on the ARM Cortex-A76, thus taking into consideration the typical speculative and
out-of-order execution paradigms found in high-performance computing processors. The evaluation was
carried out with a set of representative kernels, by assessing the number of executed instructions, its impact
on the memory bus and its overall performance. Compared to other state-of-the-art solutions, such as the
ARM Scalable Vector Extension (SVE), the obtained results show that the proposed extension attains average
performance speedups over 2.4x for the same processor configuration, including vector length.

~

/

() source Code

for (int i = 0; 9 < N; i++)
y[i] = a*x[i] + y[il;

\4

—— (IR SSA Form —

Toop:
%1 = phi

[0, %07,
%2 = gep ¥x, %i

%3 = load %2

%4 = gep My, #i

%5 = load %4

%6 = mul %3, %a

%7 = add %5, %6
store %7, %4
¥i.nxt = add %i, 1
%8 = icmp eq %i.nxt, %N
br %8, label %exit, label %loop y

[%1.nxt ,%loop]

o
Explicit Loop Control:
Based on induction
variable validation

Register Values @
rO: N, rl: &, r2: &y, r3: a /_- (e.

VLA: Predlcate-based

g., SVE)
L]
VLA: Config.-based . ﬁ[mov Lo
K’G -~ whilelt p0, r4, r0 Py .
e.g., RVV, ¥ Sl
(e.g., RVV) 38| hov 0 b0 13 _ (QExplicit Streaming
loop: setvl r4, r0 loop: vload v1, (rl), p0 stream_config(
viead v0, (al) 511 rs5, rd4, 2 g 50 3 4+,
sub ro, r0, r4 add rl, rl, rs §'E s1 = x[s0] - Tload,
sT11 r4, rd4, 2 viead w2, (r2), p0 58| 52 » y[s0] - Toad,
add ri, rl, r4 vmu'1 vl, vl, r3, p0 - s3 > y[s0] - store)
viead w2, (r2) vadd v, v2, vl, p0 lToop: mul s4, sl1, a
vmul vl, vl, r3 vstore w2, (r2), p0 add s3, s2, s4
vadd w2, v2, vl add r2, r2, rb stream_step sO
vstore v2, (r2) incvl rd cmp s0, N
add r2, r2, r4 whilelt p0, r4, ro bne .Toop
C bnez r0, .loop RN b.pred p0, .loop RN stream_end)
_—(@ Implicit Streaming <
(@ Stream + Hardware Loops (& Stream + VLA SIMD
(e.g., SSR) (e.g., UVE)

cfg_stream s2 << y[0:1:N] (load)

Loop
Preamble

W cfg_stream s1 << x[0:1:N] (load)

mowv r4, a
enable_stream_loop
loop.setup "2 instrs.”,

O mu
add

s3, s2, rs

cfg_stream s3 >> y[0:1:N] (store)

"N times"

rs, sl, r4 | Hardware Loop
Repeat N times

lToop:

'
'
"
"
"

disable_stream_loop Hardware Loop Control:
Based on initialized counter
N (no induction variables)

amble

o
=]
=]

Pr

mow
wmu1
vadd

cfg_stream
cfg_stream

3 J cfg_stream

b.not_complete s1,
Stream=based Control:

sl << x[0:1:N] (load)
s2 << y[0:1:N] (load)
53 »>> y[0:1:N] (store)
s4, a

s5, sl1, s4

53, 52, 55

. loop

Based on stream status

.. (no induction variables)

-

\

Background and Motivation

Vector-length agnostic SIMD limitations

e Conventional SIMD extensions operate with fixed-size registers (e.g., Intel AVX, ARM NEON).

e Recent vector-length agnostic (VLA) SIMD extensions (e.g., ARM SVE and RISC-V RVV) abstract the
physical vector register size in the source code, allowing different processors to adopt distinct vector sizes,
while requiring no code modifications.

e VLA extensions impose non-negligible loop overheads with predicate (ARM SVE) and vector configuration
Instructions (RVV) to both control the loop iteration and to disable vector elements outside loop bounds.

/

o
/

accelerating the loop.

The Unlimited Vector Extension (UVE)

e Memory Access Decoupling — Adoption of a stream-based paradigm to directly
stream data to the register file, decoupling memory accesses from computation,
and allowing data load/store to occur in parallel with data manipulation.

)Illlll

Scalable vector streaming

),

e Indexing-free loops — Memory access patterns (for each load/store) are exactly described at the loop
preamble, effectively removing memory access and address calculation instructions from the code,

e Simplified vectorization — Transparent scatter-gather operations for complex, multi-dimensional, strided,
and indirect patterns are performed by a Streaming Engine, transforming non-coalesced accesses into
linear patterns automatically aligned for vectorization.

e Implicit load/store — Each active data stream is associated with a different vector register, allowing
reading/writing to/from the register to automatically trigger the input/output (load/store) stream iteration,
without additional stream stepping instructions.

e Reqister-size agnostic - UVE code is agnostic to the register size. Operations over out-of-bound
elements (e.g., when the number of elements to process is not a multiple of the vector length) is prevented
by automatically disabling all vector register elements that fall out of bounds, according to stream iteration.

[A. MODELING MEMORY ACCESS PATTERNS WITH HIERARCHICHAL DESCRIPTORS]
T E— garerererisiinataients VT
E o Do
= = 1{0,ES}
:'_E' 3 D1 ™ I1 ;
o E [{0,Es} | {(1.B,P} | =@ Stream x
£ I D2v.__ 1o :
2 £ {G,E,STI—I {T,B,P} |« @ Stream ¥ :
1+ y= ¥ ‘\ .
& =
~ M 0 In :
< < |{0O,ES} @ Stream Z -
[B. EXAMPLE MEMORY ACCESS PATTERNS]
PATTERN z:* E‘GDE STREAM DESE‘RIPTDR
o Bl. LINEAr:ssssssmssnnm -a amnn e ——
fnr(l— 1-::N 1++) Dimension 0: Stream A
TIoiIiIIIILL AL {&A,N, 1}
[BE_ Rectanglllar:llllIIIIIIIIIIIIIIIIIIIIIIIIII EmEEEEmE
A Nc o _ Dlmensmn {)) Stream A
for(i=0; i<Nr; i++) {&A, NC, 1}
for(j=0; j<Nc; j++) D .
A*Nel: imension
. [FNe+] ©NiNg DL
==::B3. Rectangular Scattered: ==rrrmsssnsnsnns .
Nc Stream A
for(i=0; i<Nr; i+=2) DO0:{&A,d/2,2} DO
for(j=0; j<d; j+=2) D1:{0, Nr/2, 2*Nc} 3
A[i*Nc+ij); D1
** B4. Lower Triangular:- sEmmmmEs e =
........ Ne for(K=i=0; i<Nr; i++){ D0:{&A,0,1} W Stream A
for(K++,j=0; j<K; j++) D1:{0,Nr, Nc} DO |
A[i*Nc+ij; Modifier 1: AN
{Size.]nr:, 1, Nr} Dl Ml
C
for(i=0; i<Nc; i++) Stream A: {&A, Nc, 1} zStream B
BIA[i]]; Stream B: DO
D0:B, 1, 0}
Indirect 1: I 11
{Offset, Set-Add, A} ° A A

Descriptor: 10Offset,Size,Stride ¥ <> {0,E,S}

Static Modifier:

Legend [Indirect Modifier: {Target,Behavior,Stream Pointer} <= {T,B,P}

{Target,Behavior,Displacement,Size} <> {T,B,D,E}}

-

UVE RISC-V Extension*

UVE currently features a RISC-V instruction extension
with 450 instructions comprising integer, floating-point
and memory (including streaming) instructions, including
support for:

Stream configuration
Stream control

Vector register predication
Loop control

Vector manipulation
Scalar processing

~

-

Data Streaming Model

In the UVE streaming model, a stream is defined as a predicable n-
dimensional sequence of data that is transferred between the memory
and the processor.

Memory access modeling and description

UVE adopts a compiler-friendly memory access representation model
that combines nested loop-based indexing and loop- or data-
dependent (indirect) index dynamic ranges into an n-dimensional affine
function:

dim
y(X) = Ybase + Z Xk X Sk
k=0
with X = {xo,... ,xd;my} and x; € [Ok, E.+ Ok]

Each stream access (y) is represented as the sum of a base address
with per-dimension (k) pairs of indexing variables (x - within a range
defined by the loop header) and stride multiplication factors (.9).

e Each stream is represented by a hardware-friendly
hierarchical descriptor representation that encodes the
variables of each affine function dimension.

e Combines multiple functions to represent complex,
dynamic, and/or indirect access patterns.

4)
Streaming Engine
The UVE Streaming Engine is responsible for managing
all input and output streams.
Its architecture is composed of:
o A Stream Configuration module that accepts
stream descriptors from the loop preamble
o A Stream Table that maintains all stream
Information and iteration state
o A Stream Scheduler responsible for the selection
and issuing of stream descriptors
o Stream Load/Store Processing Modules that
perform the descriptor iteration and address
generation
o Load/Store FIFOs and Memory Request
Queues responsible for hold outstanding memory
requests and storing input/output stream data
- /

*Compilation methods for UVE and stream-based
extensions are already under development.

Check the paper here

.

UVE Microarchitecture Support

The proposed UVE provides a processor base architecture extension
comprising inclusion of:

1. 32 stream vector registers with configurable size.

2. A streaming interface to associate each register with a data stream
and perform its iteration.

3. 16 predicate registers to handle conditional code.
4. Register and stream renaming to support speculative execution.

5. Support for commit and squash of streams to handle miss-
speculation and commit events.

Instruction Fetch

K
U Ui i [

Decode Queue

U Inst U Inst U Inst U Inst

L1 Instruction

>
:> Cache

Return Stack :

Branch Predictor
(BPU)

(] Front . NI
nd .
............... coprd bopeed bopees
. Streaming Engine
Rename / Allocate / Commit 9 Eng :> Memory
ReOrder Buffer Speculation Access
state
General-Purpose . System SIMD & FP
‘ Register F?Ie] Dispatch [Rezlsters] [Register File
Stream
Lo oo Lo LJop Loy L lop o
p p P P p o S0
(Issue S e
I (T [[T (LTI fa" E-Q
ﬁ) j 3 93
= 2 = ’; = AL < 8 _Legend
Loa tore - A "
‘ Integer J ‘ﬂ [UnE] FUnitH Fﬁ.l[l? : Sllghtly Modified |
: AN M FDIV 1 Generic SIMD :
EX?CUtI B IMAC d Modifications
Units 4 New Modules
k .lll‘.‘.. LR R R

!V!'
L1 Data Cache

~

/
~

European
Processor

www.lnesc-id.pt

F CT Fundagio Initiative
para a Ciéncia
¢ a Tecnologia epl
i CPU 4-wide instruction fetch, 4-wide pOp commit
Experimental Setup gg'em | ction fc |
(@1.5GHz) 8-wide puOp issue/dispatch/writeback
e Modified Gem5 simulator to support the proposed 80 1Q. 32 LQ. 48 SQ. 128 ROB entries
UVE microarchitecture and streaming engine. 128 Tnt RF, 192 FP RF, 48x512-bit Vector RF
Functional 2xInt ALUs with a 24-entry scheduler
Units 2xInt vector/FP FUs with a 24-entry scheduler
e Comparison with baseline simulator configurations 2xLoad + 1xStore ports with a 24-entry scheduler
emul ating an ARM Cortex-A76 with NEON and Streaming 2xStream Load/store Processing Modules
Engine 8-entry Load/Store FIFOs per stream (default)
SVE SYEE: I xLoad + 1xStore ports with a 24-entry scheduler
L1-1/L1-D | 64KB 4-Way LRU
o Selection of representative benchmarks from Stride Prefetcher with depth 16
several application domains, such as memory, | 2 220 KB 8-Way LRU |
| lgebra/BLAS, stencil, data mining, dynamic QMIP Prefetcher [20], QueneSize 32
Iielr g _ : : _ g, ay Snoop-based cache coherence protocol
programming, and n-body (physics) systems. DRAM Dual-Channel DDR3-1600 8x8 11-11-11
o ol | B " o D,
0 . .
Benchmark £ 20D> ¢ Pattern ,v N OE Speed-up Commited Instructions
Suite Cicidcigls Support # E 'E E.E (vs. ARM scalar) (vs. ARM scalar)
5 3IXRIEQS cSowt 83
2 X9 S$8 n3s29 &8 0.4 8 12 16 0% 6%12% 24%*$100%
< A|Memcpy 1011 1 1D Al v i v j A ‘
L T T T T T T T T T T . 1 H H R T
= B |STREAM 10/4{ 2 { 2D Bl v | v ¥ |(= J'!:.RM SVE B (= ARM SVE
o C|saxpy si1i1 | 1 cl viv v L u_"'E] C (W UVE J
© D|GEMM 413! 1 | 4D ol v ' v v« = | 2}{ ia D |
s E|3mMM slala ! ap el v v v ME em LIl
ﬁE F IlMvT g8l2! 2 2D Fl v | v ’ F
~ el el | G M | L
< G|GEMVER 174! 2 | 20 G| v | v ¥ G
, H]Trisolv 5111 2 [2D+ SM HI X | /v / H
E | |Jacobi-1D gl2!1 1D] v a4 I EE
B et ST . o
]]Jacobi-2D 12121 2 2D J| v | v] EE
n-Booy K |HACCmk 31111 1D K| v v K E;
L |KNN 301 2 |20+ Ll X 1v v L | -EE
% M|MAMR-Diag 21| 2 [2D+5M Ml X | v M n— ><
E N |Covariance |8 {3| 3 [4D+5sM N[X i X v N _‘.!;_-_.
5 O|MAMR 2i1{2 | 2D ol v { X ¥ o ,,E
SV SPUUR Sy .
P | MAMR-Ind 30102 [2D+1M Pl x i x v P fw
stencit Q | Seidel-2D 1001 2 2D Ql v | X ¥ Q EE
e L E"t
“roes R |Floyd-Warshallia i1i 3 § 4D R v | X v R | { |] =
| SM - static Modifier IM - Indirect Modifier | 0% 6% 12% 24%=#100%

/

-

Results, Conclusions, and Future Work

~

Memory access linearization provides improved vectorization capabilities over the ARM compiler
allowing the vectorization of a wider range of complex loop patterns.

Average performance improvement by 2.4x over ARM SVE:
Loop acceleration through code size reduction, with an average 60.9% less committed instructions.
resulting from the streaming engine preemptive and

Significant load-to-use latency reduction,
autonomous data acquisition to the vector registers.

Increased effective memory bandwidth utilization, from the streaming infrastructure management and
data buffering.

UVE imposes minimal hardware impacts with the inclusion of the Streaming Engine (with an estimated

footprint close to %2 of an L1 cache).

Hardware prototypes currently under development, targeting modern processor pipelines and dedicated
acceleration frameworks.

to Register

from

File Writeback
C fi ti [Store FIFO & Load FIFO] Data from
_pg:-‘tlgura ron DCE”PEE'"E"' Load FIFO } Memory
#Estreams .\.L\ -) l.
Stream Configuration =) - N\ (Data to
,,,,,,,,,,,,,,,,,,,,, 1 (descriptor |state [iter |flags \I b 5 o i 3 Store FIFO Memory
Sorting Queue E= 28 ‘)
‘L—rl—l—l—r—rrrg—rqrrrr—rrrrr - # E 'g 3 '%E S — o Address P
T new ' 3 20 Generator E Memory Request 9 Memory
Validation stream ﬁﬁ v y s = e Access
' I'4 N 0] Queue 2 Requests
\ J \. 4 E
Stream Table b
. . _— Stream Load/Store
Streaming Engine Processing Modules
L%

Acknowledgments: This work was partially supported by national funds through Fundacédo para a Ciéncia e a Tecnologia (FCT) under projects UIDB/50021/2020 and PTDC/EEI-
HAC/30485/2017, and by funds from the European Union Horizon 2020 Research and Innovation programme under grant agreement No. 826647.

CONTACT US

nuno.neves@inesc-id.pt

'E.'#' =]

"f.r;..

