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Overview

* Introduction on HPC microarchitectures

* Performance and efficiency of microarchitectures
e Jump into HW performance counters

* Aview on Linux Perf

* How to monitor energy/power

* Roofline and TMAM performance models

e Experimental results on MAX codes

* Conclusions & Take away messages
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What they taught to you about computer architecture

CPU: scalar, in order, RISC based, 32bit, short pipeling, single level cache, single threading, single core, single socket
with fixed operatingfrequency and uniform memory access
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Cascade lake microarchitecture C I N E CA
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Goal: exploit performance

Performance is a result of:

* How many instructions you require to implement an algorithm

* How efficiently those instructions are executed on a CPU

But what does it mean "efficient execution"?

* Scientific view: HPC application » Scientific algorithm + data » Result

* Computer view: HPC application » Set of finite sequences of computer instructions + digital data » Result
* Computer performance » Higher Instructions Per second/Cycle (IPC) » Shorter execution time

* Almost true -> Eg. higher IPC with scalar instructions

* FLoating point Operations Per Second (FLOPS) » Better metric » 500
But remember the following three things:

1. Itisimpossible to reach the theoretical peak performance of a system;

2. Focusing on the optimization of a single performance metric can reduce other performance metrics (trade-off problem);

3. Asingle performance metric cannot express the overall efficiency of a microarchitecture but we need to consider multiple
metrics;
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Micro architecture performance optimization

In modern CPUs it is very difficult to understand if my application is
efficiently performing on a specific system (also from an energy point of

view)!

We need HW support from the processor (PMU) -> Only what is measurable
can be improved!

Tools help you to get access to the HW subsystem and automatize routines
but...

Use vour brain! Tools may help, but you do the thinking!!!
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uarch performance events (very few of them)

* Cycles: countthe number of cycles
* Instructions retired: countthe number of macro instructions executed
* Vector instructionsretired: countthe number of vector macro instructions

* Branches: count the number of branch taken

» Cache miss/hit (at multiple cache levels): count the miss/hit of the cache references -> it show the locality of the
code

* Memory read/write: number of time that a cache line was read/written from the memory

uarch performance events # performance metrics

FLOPS: arithmetic operations executed

Memory throughput: number of bytes exchange with the memory

IPC: instructions per cycle -> this metric show the macro instruction throughput of the microarchitecture

Vectorization ratio: percentage of how many vector instructions are retired wrt the total instructions
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Performance Monitoring Unit (PMU)

The CPU supports you with the PMUs!

A PMU usually support many events (cycles, instructions retired, etc.) through Performance
Monitoring Counters (PMC).

A PMU can be:
e on-core: microarchitecture events at the core level (cycles, instructions retired, ...)

 off-core: microarchitecture events outside of cores (memory read/write, ...)

‘ ‘ H PMCs can be:
eoCbex | » fixed: can be only enabled or disable and profile a specific event
. - * configurable: can monitor many events
e = e e PMCs are usually configurable only at kernels level
R S Usually, CPUs provide at user space some assembly instructions

4 Intel® QPI links

with low overhead (see rdpmc()) to read PMCs ;
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Enter Linux perf

 Official Linux profiler
e Built on top of kernel infrastructure (ftrace)
e Source and docs in kernel tree

* Provides a plethora of profiling/tracing features at all system levels
e user, kernel, CGROUP, etc...

* Most important for us: a comprehensive toolbox to gain workload
execution insights via PMCs

* Low overhead*
* Tunable
e 1-2% counting mode, 5-15% sampling w/multiplexing

* Nowak, Andrzej et al. “Establishing a Base of Trust with Performance Counters for Enterprise Workloads.” USENIX Annual Technical Conference (2015).



Linux perf_events Event Sources
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Dyne?mlc Tracepoints syscalls: PMCs
Tracing
extd: Oberating Svst sock: // SChiéz cycles
A perating system / t‘-fls : 1 instructions
icati signat: branch-*
Applications / / timer: L1%
workqueug:
uprobes System Librarieﬁ / T LLC-*
X System Call Interface / y CPU l
Int
File Systems TCP/UDP A 1
kprobes > kmem:
A Volume Manager IP Virtual «— vmscan: Memory
Block Device Interface Ethernet 4 Memory writeback Bus
Device Drivers
v / ‘\ ) . DRAM
jbd2 : f net: 1rq:
block: scsi: skb: T
mem-load
mem-store
Software Events cpu-clock page-faults
cs migrations minor-faults
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pert stat/record format

S perf record -a -F 4000 -e L1-dcache-load-misses,L1-dcache-loads -- SAPP
| J 1 J 1

A A T

events
sampling frequency, which events

scope
which sources we want to take into account

action
record (sample), stat (count)

CINECA
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What about energy and power?

 We are very unlucky!

* No standard mechanisms/APIs/performance counters
* Different system = different power/energy monitors

e Often only root can have access

e Several power domains

* Metric to measure energy efficiency: FLOPS/W
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Intel power management - RAPL

Intel CPU implements hardware power controller called Running Average Power Limit (RAPL)

Power Domains

Package Domain: monitor/limitthe power consumption
' ' ' ' ' ' ' ' ' for the entire package of the CPU, this includes cores and

uncore components.
DRAM

the cores of the CPU.

PACKAGE oD . _ o _
Bl = DIRLORERD  Drivmomn mormr e e et
Tore Tore Tore B (no client)

D D D
Uncore - o PP0O/Core Domain: is used to monitorand limit the only to
| PPO/CORE Power Plane |

PPO/CORE Power Plane

Machine Specific Registers: MSR address space 0x600 — 0x640
Sysfs Interface: /sys/devices/virtual/powercap/intel-rapl/intel-rapl:X/intel-rapl:0:Y X=socket_id, Y=power_domain ,

P

:is used to monitorand limit the
power only the graphic component of the CPU (no server).




CINECA

IBM Power8/9 Power Management - OCC
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BMC

What is the On-Chip Controller (OCC)?

405 microcontrollerwith 512k dedicated RAM
Hardware/Firmware that controls power, performance &
thermal (independent micro OS)

Can communicate in band with the host through the main
memory

What does OCC do?

Reads/controlssystem power (CPUs, GPUs, board, etc.)
Reads/controlschip temps (CPUs, GPUs, board, etc.)
Enables efficient fan control

Provides thermal protection

Power Capping

Fault Tolerance

Energy saving

Performance boost

In-band: through Linux occ-hwmon kernel module: /sys/firmware/opal/exports/occ_inband_sensors + C data structs that define the
405 memory address space (https://www.kernel.org/doc/html/v5.9/hwmon/occ.html, https://github.com/open-power/occ)

Out-of-band: through the BMC and IP network communication

15


https://www.kernel.org/doc/html/v5.9/hwmon/occ.html
https://github.com/open-power/occ
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Cavium ThunderX2 Power Management - TX2MON

Cavium ThunderX2 processor implement a similar RAPL/OCC controller

Unfortunately, we don't have too much information on it, but we know that is possible
to monitor the following power domains:

Core: voltage and power consumed by all cores on the SoC.

SRAM: voltage and power consumed by internal SRAM on the SoC.
Internal memory: voltage and power consumed by the LLC ring on the SoC.
SoC: voltage and power consumed by miscellaneous SoC blocks.

memory address space (https://github.com/Marvell-SPBU/tx2mon)
Out-of-band: through the BMC and IP network communication

l I In-band: through Linux TX2MON kernel module: /sys/devices/platform/tx2mon + C data structs that define the controller


https://github.com/Marvell-SPBU/tx2mon)
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So, how can we collect power/energy information
from different systems?

* Not easy at all!

* For this reason, we developed COUNTDOWN (CINECA + UNIBO project)

« COUNTDOWN instruments the application at execution time and collect information on the
application workload and on the energy/power consumption of the system

app.x libcntd.so libmpi.so
libentd.so M ain(}{ M PI_%CALL_NAME%(){ PMPL_Init(){...}
/* Initialize the MPl environment */ Prologue()
I MPI Interface I MPI_Init() PM PI_%CALL_NAME%() PMPI_Comm_size() {...}
Epilogue()
[* Getthenumber of processes */ } PMPI_Comm_rank() {...}
MPI_Comm_size(&size)
Prologue()} PMPI_Finalize(){...}
/*Gettherank */ Profiling()
M PI_Comm_rank(&rank) Event(START)
} MPI_Init() {...}
/*Printa helloworld */ L w0 L
. . . printf("Hello worldfrom rank “ € c Epilogue()} € c MPI_Comm_size(){...}
F|ne—gra|n Coarse-grain “%d, size %d\n“, rank, size) 2 < Event(END) 2 £
Profiler Profiler Callback = Profiling() Z3 MPI1_Comm_rank( {...}
/* Finalizethe MPlenvironment */ }
. MPI_Finalize 7 MPI1_Finalize(){...
oung | e ] || e 4

O COUTDOWN: https://github.com/EEES|ab/countdown .



https://github.com/EEESlab/countdown​

CINECA

How can | use perf metrics? The roofline model

A

Attainable Flop/s

v
3 V&

Peak FLOP/s

. 4
.‘z/

g4 Bandwidth-bound
g |

Y
7 l

5
4|

Compute-bound

Arithmetic Intensity (FLOP: lByte)

>

Is performance limited by compute or data movement?

Y-axis: performance in FLOPS

X-axis: Arithmetic Intensity Al (FLOP/Byte)

Ratio between total FLOP and total byte exchange
with main memory

Measure of data locality (data reuse)
Typical machine balance is 5-10 Al
Stream TRIAD: 0.083 Al (2 FLOP per 24 bytes)

Application/kernel near the roofline are making good
use of computational resources

Compute bound: >50% of peak performance
Bandwidth bound: >50% of Stream Triad

Bad performance:

Insufficient cache bandwidth

Bad data locality

Integer heavy code

Lack of FMA

Lack vectorization 18
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Drill down: identify bootlenecks with TMAM

* Top-down Microarchitecture Analysis Method

e first attempt by Intel at a simplified approach

* hierarchical drill-down method guided by PMCs

 goal: identify the real bottleneck WRT micro-architecture
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TMAM: high level breakdown

Uop
Allocate?
Yes ) No
: I )
' | The frontend is not delivering enough uops per
Uop Ever Back End cycle while the back end of the pipelineiis ready
Retires? Stalls? to acceptuops
Successfully delivered uops who Yes No Yes No
eventually do retire
v \ 4 ) ) 4 h 4
v 7 Y \‘ 5
. Bad Back End Front End
Retiring .
Speculation Bound Bound

Tracks uops that never retire or allocation slots
wasted due to recovery from branch miss-prediction
or clears

No uops are delivered due to lack of required
resources atthe back end of the pipeline

20
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TMAM: low level breakdown

Pipeline Slots
Not Stalled Stalled

‘./ \ .‘/ \\‘ | '\\ 7 \
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YV Y Voo o I 8 Y Y Y
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Supercomputers

#9*Marconil00 — IBM Power9 + Nvidia V100 #47* Marconi— Intel Xeon 8160 SkylakeX

& Y "N L N et X
¥ R 2 y ] -~ S 2
d N P » { . . s

500

The List.

500

The List.

*at ranking time
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Why did we select these supercomputers?

Peak

Operating Peak Memor Peak Energy
Cores SMT Frequency FLOPs Ban dwi\c;th Efficiency Characteristic
H FLOP FLOPs/W
(GHz) (GFLOPs) (GB/s) (GFLOPs/W)
Intel x86-64 24 OFF 2.1 4(6) 1612 120 150 10.75 Unbalanceon
Xeon 8160 (AVX-512) the compute
IBM Power ISA 16 x4 3.8 6 486 160 250 1.94 Unbalanceon
Power 9 the memory
Cavium ARMv8.1 32 OFF 2.5 4 640 160 200 3.20 Unbalanceon
ThunderX2 the memory
AMD x86-64 64 OFF 2.25 4 (8) 2662 190 225 11.82 Good overall
7742 Epyc (AVX-256) balance

*nodes of all the systems are double sockets



Applications & Software Stack
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Software Stack

www.flapw.de ]
@ u U H N _I_ u M E S P R E S S l] CPU Compilator MPI BLAS & LAPACK ScalLAPACK FFTW

I e u r Intel GCC9.3 OpenMPI MKL 2018 MKL 2018 MKL 2018

Xeon 8160 4.1.1
]
IBM GCC9.3 OpenMPI ESSL 6.2.1 Netlib- FFTW 3.9
——— Power 9 4.1.1 OpenBLAS 0.3.18 scalapack 2.1.0
Cavium GCC9.3 OpenMPI ArmPL 20.3 Netlib- FFTW 3.9
ThunderX2 41.1 ScalaPACK2.1.0
AMD GCC9.3 OpenMPI AMDblis/Flame AMDScalaPACK AMDFFTW
7742 Epyc 4.1.1 3.0 3.0 3.0
: a m b 0 “"ﬁ E Other accessory libraries:
, i N N S I e S a * Netcdf Fortran4.5.3 e ELSI2.7.1
* NetcdfC4.8.1
™  HDF51.10.7 24
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Configuration:

* Single node experiments

* Pure MPI (one MPI rank per core)

« We compared two different version
of the code

Behaviors:

* Execution time: proportional with
the peak FLOPS (Power9?)

* |PC: 22 limited by the number of
vector ALUs (2)

* Vectorization ratio: 2100% (Power9?)

* FLOPS and FLOPS/W: proportional
with the peak FLOPS

Conclusions:

* QEis compute bound!

* High vectorized codes work pretty
well!

* Intel parchs ¥

25
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Configuration:

* Single node experiments

e MPI& Openmp

« We compared two different version
of the codes

Behaviors:

* Execution time: proportional with
the peak memory bandwidth and
the capacity to move data!

* |PC: <2 limited by the memory

* Vectorization ratio: <15% this
workload is very difficult to
vectorize!

* FLOPS and FLOPS/W: limited by the
memory, are these good metrics?

Conclusions:
e BigDFT is memory bound!

. 1BM Power9 ' BigDFT
26



Roofline — IBM Power9

Roofline model - MarconilO0

103 .

Performance [GFLOPSs]

973 GFLOPs

QE-6.4.1
QE-6.7-MaX
Yambo-4.5.3
Yambo-5.0.4
CP2K-6.1
CP2K-8.1
Siesta-4.0.2
Siesta-MaXx-1.3.1
Fleur-MaX-R3.1
Fleur-MaX-R5.1
BigDFT-1.8.2
BigDFT-1.9.1

*single node experiment results

10° 10!
Operational Intensity [FLOPs/Byte]

CINECA
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TMAM — Intel SkylakeX vs ARM ThunderX?2

Marconi Intel Skylake

100

80

TMAM [%]

*single node experiment results
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Il Bad speculation

Front-end
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Conclusions & Take away messages

* Application workload have different performance on different
architectures

* Lack of microarchitecture efficiency limits the application
performance more than scalability

* Performance models can help you to understand how application use
the system resources

* Tools may help to spot inefficiencies, but you do the thinking!

William H. McRaven: “If you can't do the little things right, you will never do
the big things right.”

30
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But what about GPUs?

THAT'SA STORY FOR ANOTHEB

w\"
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Thank you for yeurattention!



