
Microarchitecture performance assessment and
energy monitoring of MaX codes through

Linux Perf and power management API interfaces

Daniele Cesarini
HPC Specialist - CINECA

Federico Ficarelli
Federico Tesser

Andrea Piserchia
Fabio Affinito

HPCSE 2022, Hotel Soláň, Czech Republic
May 16-19, 2022

Overview

• Introduction on HPC microarchitectures

• Performance and efficiency of microarchitectures

• Jump into HW performance counters

• A view on Linux Perf

• How to monitor energy/power

• Roofline and TMAM performance models

• Experimental results on MAX codes

• Conclusions & Take away messages

2

Acknowledgments

Regale Project
The software stack and the power
management tools was
developed in the REGALE project

EPI Project
The microarchitecture analysis
and the performance
assessment are part of the
work of EPI-SGA1/2 projects

MaX Project
Most of the experimental work
presented in these slides was
performed in the WP4 codesign
work package of MaX project

3

What they taught to you about computer architecture

CPU: scalar, in order, RISC based, 32bit, short pipeling, single level cache, single threading, single core, single socket
with fixed operating frequency and uniform memory access

4

What it actually is
CPU: superscalar, out of order, multi-level caches,
CISC based (x86), 64bit, multi-threading, many core,
multi socket with dynamic voltage and frequency
scaling and non-uniform memory access

Cascade lake microarchitecture

Cascade lake SoC Layout 5

Goal: exploit performance
Performance is a result of:

• How many instructions you require to implement an algorithm

• How efficiently those instructions are executed on a CPU

But what does it mean "efficient execution"?

• Scientific view: HPC application Scientific algorithm + data Result

• Computer view: HPC application Set of finite sequences of computer instructions + digital data Result

• Computer performance Higher Instructions Per second/Cycle (IPC) Shorter execution time

• Almost true -> Eg. higher IPC with scalar instructions

• FLoating point Operations Per Second (FLOPS) Better metric

But remember the following three things:

1. It is impossible to reach the theoretical peak performance of a system;

2. Focusing on the optimization of a single performance metric can reduce other performance metrics (trade-off problem);

3. A single performance metric cannot express the overall efficiency of a microarchitecture but we need to consider multiple
metrics;

6

Micro architecture performance optimization

In modern CPUs it is very difficult to understand if my application is
efficiently performing on a specific system (also from an energy point of
view)!

We need HW support from the processor (PMU) -> Only what is measurable
can be improved!

Tools help you to get access to the HW subsystem and automatize routines
but...

Use your brain! Tools may help, but you do the thinking!!!

7

µarch performance events (very few of them)
• Cycles: count the number of cycles

• Instructions retired: count the number of macro instructions executed

• Vector instructions retired: count the number of vector macro instructions

• Branches: count the number of branch taken

• Cache miss/hit (at multiple cache levels): count the miss/hit of the cache references -> it show the locality of the
code

• Memory read/write: number of time that a cache line was read/written from the memory

µarch performance events ≠ performance metrics
• FLOPS: arithmetic operations executed

• Memory throughput: number of bytes exchange with the memory

• IPC: instructions per cycle -> this metric show the macro instruction throughput of the microarchitecture

• Vectorization ratio: percentage of how many vector instructions are retired wrt the total instructions
8

Performance Monitoring Unit (PMU)

The CPU supports you with the PMUs!

A PMU usually support many events (cycles, instructions retired, etc.) through Performance
Monitoring Counters (PMC).

A PMU can be:

• on-core: microarchitecture events at the core level (cycles, instructions retired, ...)

• off-core: microarchitecture events outside of cores (memory read/write, …)

PMCs can be:

• fixed: can be only enabled or disable and profile a specific event

• configurable: can monitor many events

PMCs are usually configurable only at kernels level

Usually, CPUs provide at user space some assembly instructions
with low overhead (see rdpmc()) to read PMCs

9

Enter Linux perf

• Official Linux profiler
• Built on top of kernel infrastructure (ftrace)
• Source and docs in kernel tree

• Provides a plethora of profiling/tracing features at all system levels
• user, kernel, CGROUP, etc...

• Most important for us: a comprehensive toolbox to gain workload
execution insights via PMCs

• Low overhead*
• Tunable
• 1-2% counting mode, 5-15% sampling w/multiplexing

* Nowak, Andrzej et al. “Establishing a Base of Trust with Performance Counters for Enterprise Workloads.” USENIX Annual Technical Conference (2015). 10

11

perf stat/record format

$ perf record -a -F 4000 -e L1-dcache-load-misses,L1-dcache-loads -- $APP

action
record (sample), stat (count)

scope
which sources we want to take into account

events
sampling frequency, which events

12

What about energy and power?

• We are very unlucky!

• No standard mechanisms/APIs/performance counters

• Different system = different power/energy monitors

• Often only root can have access

• Several power domains

• Metric to measure energy efficiency: FLOPS/W

13

Intel power management - RAPL
Intel CPU implements hardware power controller called Running Average Power Limit (RAPL)

Power Domains

Package Domain: monitor/limit the power consumption
for the entire package of the CPU, this includes cores and
uncore components.

DRAM Domain: monitor/limit power consumption of the
DRAM memory. It is available only for server architectures.
(no client)

PP0/Core Domain: is used to monitor and limit the only to
the cores of the CPU.

PP1/Graphic Domain: is used to monitor and limit the
power only the graphic component of the CPU (no server).

Machine Specific Registers: MSR address space 0x600 – 0x640
Sysfs Interface: /sys/devices/virtual/powercap/intel-rapl/intel-rapl:X/intel-rapl:0:Y X=socket_id, Y=power_domain 14

IBM Power8/9 Power Management - OCC
What is the On-Chip Controller (OCC)?
• 405 microcontroller with 512k dedicated RAM
• Hardware/Firmware that controls power, performance &

thermal (independent micro OS)
• Can communicate in band with the host through the main

memory

What does OCC do?
• Reads/controls system power (CPUs, GPUs, board, etc.)
• Reads/controls chip temps (CPUs, GPUs, board, etc.)
• Enables efficient fan control
• Provides thermal protection
• Power Capping
• Fault Tolerance
• Energy saving
• Performance boost

In-band: through Linux occ-hwmon kernel module: /sys/firmware/opal/exports/occ_inband_sensors + C data structs that define the
405 memory address space (https://www.kernel.org/doc/html/v5.9/hwmon/occ.html, https://github.com/open-power/occ)
Out-of-band: through the BMC and IP network communication 15

https://www.kernel.org/doc/html/v5.9/hwmon/occ.html
https://github.com/open-power/occ

Cavium ThunderX2 Power Management - TX2MON

Cavium ThunderX2 processor implement a similar RAPL/OCC controller

Unfortunately, we don't have too much information on it, but we know that is possible
to monitor the following power domains:

• Core: voltage and power consumed by all cores on the SoC.
• SRAM: voltage and power consumed by internal SRAM on the SoC.
• Internal memory: voltage and power consumed by the LLC ring on the SoC.
• SoC: voltage and power consumed by miscellaneous SoC blocks.

In-band: through Linux TX2MON kernel module: /sys/devices/platform/tx2mon + C data structs that define the controller
memory address space (https://github.com/Marvell-SPBU/tx2mon)
Out-of-band: through the BMC and IP network communication 16

https://github.com/Marvell-SPBU/tx2mon)

libcntd.so

Wrapper
C/C++

Wrapper Fortran
Binding C

MPI
Profiler

EventsFine-grain
Profiler

Coarse-grain
Profiler

Runtime

Callback

MPI Interface

PMPI InterfaceLogging

So, how can we collect power/energy information
from different systems?

COUTDOWN: https://github.com/EEESlab/countdown

M ain(){

/* Initialize the MPI environment */

M PI_Init()

/* Get the number of processes */
M PI_Comm_size(&size)

/* Get the rank */

M PI_Comm_rank(&rank)

/* Print a hello world */

printf("Hello world from rank “

“%d, size %d\n“, rank, size)

/* Finalize the MPI environment */
M PI_Finalize()

}

M PI_%CALL_NAME%(){

Prologue()

PM PI_%CALL_NAME%()

Epilogue()

}

Prologue(){

Profiling()

Event(START)

}

Epilogue(){

Event(END)

Profiling()

}

PM PI_Init() {…}

PM PI_Comm_size() {…}

PM PI_Comm_rank() {…}

PM PI_ Finalize() {…}

M PI_Init() {…}

M PI_Comm_size() {…}

M PI_Comm_rank() {…}

M PI_ Finalize() {…}

app.x libcntd.so libmpi.so

D
yn

am
ic

Li

nk
in

g

D
yn

am
ic

Li

n
ki

n
g

• Not easy at all!
• For this reason, we developed COUNTDOWN (CINECA + UNIBO project)
• COUNTDOWN instruments the application at execution time and collect information on the

application workload and on the energy/power consumption of the system

17

https://github.com/EEESlab/countdown

• Is performance limited by compute or data movement?

• Y-axis: performance in FLOPS

• X-axis: Arithmetic Intensity AI (FLOP/Byte)

• Ratio between total FLOP and total byte exchange
with main memory

• Measure of data locality (data reuse)

• Typical machine balance is 5-10 AI

• Stream TRIAD: 0.083 AI (2 FLOP per 24 bytes)

• Application/kernel near the roofline are making good
use of computational resources

• Compute bound: >50% of peak performance

• Bandwidth bound: >50% of Stream Triad

• Bad performance:

• Insufficient cache bandwidth

• Bad data locality

• Integer heavy code

• Lack of FMA

• Lack vectorization

How can I use perf metrics? The roofline model

18

Drill down: identify bootlenecks with TMAM

• Top-down Microarchitecture Analysis Method

• first attempt by Intel at a simplified approach

• hierarchical drill-down method guided by PMCs

• goal: identify the real bottleneck WRT micro-architecture

19

TMAM: high level breakdown

The front end is not delivering enough uops per
cycle while the back end of the pipeline is ready

to accept uops

No uops are delivered due to lack of required
resources at the back end of the pipeline

Successfully delivered uops who
eventually do retire

Tracks uops that never retire or allocation slots
wasted due to recovery from branch miss-prediction

or clears

20

TMAM: low level breakdown

21

Supercomputers
#9*Marconi100 – IBM Power9 + Nvidia V100 #47* Marconi – Intel Xeon 8160 SkylakeX

#7* Selene – AMD 7742 Epyc + Nvidia A100 (DGX) #203* Astra – ARM Cavium ThunderX2 (ARMIDA@E4)

*at ranking time
22

Why did we select these supercomputers?

CPU ISA Cores SMT
Operating
Frequency
(GHz)

Peak
IPC

Peak
FLOPs
(GFLOPs)

Peak
Memory
Bandwidth
(GB/s)

TDP
(W)

Peak Energy
Efficiency
(GFLOPs/W)

Characteristic

Intel
Xeon 8160

x86-64 24 OFF 2.1
(AVX-512)

4 (6) 1612 120 150 10.75 Unbalance on
the compute

IBM
Power 9

Power ISA 16 x4 3.8 6 486 160 250 1.94 Unbalance on
the memory

Cavium
ThunderX2

ARMv8.1 32 OFF 2.5 4 640 160 200 3.20 Unbalance on
the memory

AMD
7742 Epyc

x86-64 64 OFF 2.25
(AVX-256)

4 (8) 2662 190 225 11.82 Good overall
balance

*nodes of all the systems are double sockets 23

Applications & Software Stack

Software Stack

CPU Compilator MPI BLAS & LAPACK ScaLAPACK FFTW

Intel
Xeon 8160

GCC 9.3 OpenMPI
4.1.1

MKL 2018 MKL 2018 MKL 2018

IBM
Power 9

GCC 9.3 OpenMPI
4.1.1

ESSL 6.2.1
OpenBLAS 0.3.18

Netlib-
scalapack 2.1.0

FFTW 3.9

Cavium
ThunderX2

GCC 9.3 OpenMPI
4.1.1

ArmPL 20.3 Netlib-
ScaLaPACK2.1.0

FFTW 3.9

AMD
7742 Epyc

GCC 9.3 OpenMPI
4.1.1

AMDblis/Flame
3.0

AMDScaLaPACK
3.0

AMDFFTW
3.0

Other accessory libraries:
• Netcdf Fortran 4.5.3
• Netcdf C 4.8.1
• HDF5 1.10.7

• ELSI 2.7.1

24

Configuration:
• Single node experiments
• Pure MPI (one MPI rank per core)
• We compared two different version

of the code

Behaviors:
• Execution time: proportional with

the peak FLOPS (Power9?)
• IPC: ≥2 limited by the number of

vector ALUs (2)
• Vectorization ratio: ≥100% (Power9?)
• FLOPS and FLOPS/W: proportional

with the peak FLOPS

Conclusions:
• QE is compute bound!
• High vectorized codes work pretty

well!
• Intel µarchs QE

25

Configuration:
• Single node experiments
• MPI & Openmp
• We compared two different version

of the codes

Behaviors:
• Execution time: proportional with

the peak memory bandwidth and
the capacity to move data!

• IPC: <2 limited by the memory
• Vectorization ratio: <15% this

workload is very difficult to
vectorize!

• FLOPS and FLOPS/W: limited by the
memory, are these good metrics?

Conclusions:
• BigDFT is memory bound!
• IBM Power9 BigDFT

26

Roofline – IBM Power9

*single node experiment results 28

TMAM – Intel SkylakeX vs ARM ThunderX2

*single node experiment results 29

Conclusions & Take away messages

• Application workload have different performance on different
architectures

• Lack of microarchitecture efficiency limits the application
performance more than scalability

• Performance models can help you to understand how application use
the system resources

• Tools may help to spot inefficiencies, but you do the thinking!

William H. McRaven: “If you can't do the little things right, you will never do

the big things right.”
30

But what about GPUs?

Thank you for your attention!
31

