CINECA

Microarchitecture performance assessment and
energy monitoring of MaX codes through
Linux Perf and power management API interfaces

HPCSE 2022, Hotel Solan, Czech Republic
May 16-19, 2022

. . . Federico Ficarelli
Daniele Cesarini Federico T
HPC Specialist - CINECA ederico lesser

Andrea Piserchia
Fabio Affinito

Overview

* Introduction on HPC microarchitectures

* Performance and efficiency of microarchitectures
e Jump into HW performance counters

* Aview on Linux Perf

* How to monitor energy/power

* Roofline and TMAM performance models

e Experimental results on MAX codes

* Conclusions & Take away messages

CINECA

Acknowledgments

MaX Project

Most of the experimental work
presented in these slides was
performed in the WP4 codesign
work package of MaX project

b

Regale Project

The software stack and the power
management tools was
developedin the REGALE project

CINECA

European
Processor
Initiative

epl

EPI Project

The microarchitecture analysis
and the performance
assessment are part of the
work of EPI-SGA1/2 projects

CINECA

What they taught to you about computer architecture

CPU: scalar, in order, RISC based, 32bit, short pipeling, single level cache, single threading, single core, single socket
with fixed operatingfrequency and uniform memory access

I%X EXMEM MEM/WE
. Branch

76107 1aken

Re 10 .

Ry 15

Registers

Fmemory ™ mEmweIR

Cascade lake microarchitecture C I N E CA

Front End Instruction
Cache Tag| L1 Instruction Cache

WOP Cache 32KiB 8-Way Instruction
Tag TLB

What it actually is

CPU: superscalar, out of order, multi-level caches, Branch B

. . . Predictor (16 B window)

CISC based (x86), 64bit, multi-threading, many core, = o e e
: . . Inghuction Quene [immmruen

multi socket with dynamic voltage and frequency N —

scaling and non-uniform memory access Herscose SWayDecode
& Y o | P e

a12A2/ar9

(MS ROM)
e Engine
4 poPs (SE)
A A A A A A S A A A A A A 5 pOPs
i N TR TR] T Decaded Stream Buffer (DSB) Y
7 [[] ; b [[[1 A l[] J l, (LOP Cache) 6 poPs
Vv v/ AVARVARVERY vV V VY vV V VYV W Vv vV VOV WV (1.5k pOPs; B-Way)
PCle x16 OnPKG (64 B window) LB«
2x UPI x20 PCle x16 DMI x4 PC?e x16 UPI x20 PCle x16
CBDMA
= BD 1 el Allocation Queue (IDQ) (128, 2x64 pOPs)
LLC SF SF LLC LLC SF SF LLC LLC SF SF LLC
. 2, WOP pOP pOP pOP pOP pOP Branch Order Buffer
Register Alias Table (RAT) | +a (BOB) (48-entry)
Core Core Core Core Core Core | “op
Load -
ADPLL / FIVR ADPLL / FIVR ADPLL / FIVR ADPLL / FIVR ADPLL / FIVR ADPLL / FIVR g “4“ Move Elimination REn::gredigf;;tééf‘ee:gigent ‘ Ones Idioms | | Zeraing Idioms. |
T = oS = === —-—-— = ——— . —— - — - FU.]
g z HOP HOP HOP HOP HOP HoP HOP HOP
7|1k
COI'e CO I‘e COI'e COI‘E COI'e COI‘e ﬁ Integer Physical Register File . SChequler . Vector Physical Register File
E int | (180 Registers) Unified Reservation Station (RS) (168 Registers)
£ | stare (97 entries)
ADPLL / FIVR ADPLL / FIVR ADPLL / FIVR ADPLL j FIVR ADPLL / FIVR ADPLL/ FIVR
[Porto | [Portl | [Ports | [Port6 | [Port2 | [Port3 | [Porta | [TPort7 |
<= ooms w . ooma <=—> wop woP wop woP woP op wop woP
o= (=i
3o 53 =
<"~ DDR4 T3 13 DDR4 <> [INTALU || INTALU | | inTAW | [acu || Acu |
- g3 Core Core Core Core it | = 6aB/cycle
<= ooRa % bora < | [INT Vst AL (INT Veck ALUES[iNT Vect ALD] 5 @5 4
ADPLL / FIVR ADPLL / FIVR ADPLL / FIVR ADPLL / FIVR H INT Vect MULE:|INT Vect MUL| INT Vect MUL| : 512bit/cycle =% = o To L3
[_FPFMA [FPFMA | H n (o
Ue sF e sf 0 e s B L=
512b fused 512{: lztlinm ﬂnly] EUS @ § (]
AES _|[Bitscan | LT
Vect String <
Core Core Core Core Core Core P DIV
Branch
ADPLL / FIVR ADPLL / FIVR ADPLL / FIVR ADPLL / FIVR ADPLL / FIVR ADPLL / FIVR E - E .
xecution Engine
LC SF e e e e] SF LLC 9 Store Buffer & Forwarding
(56 entries) e
64B/eycle \ E
Core Core Core Core Core Core . g
] a
Data TLB o
ADPLL / FIVR ADPLL [FIVR ADPLL [FIVR ADPLL / FIVR ADPLL / FIVR ADPLL / FIVR Load Buffer § L1 D?ta Cache Q L]
(72 entries) % 32KiB 8-Way
E Line Fill Buffers (LFB) 5

Cascade lake SoC Layout Memory Subsystem 7=

CINECA
Goal: exploit performance

Performance is a result of:

* How many instructions you require to implement an algorithm

* How efficiently those instructions are executed on a CPU

But what does it mean "efficient execution"?

* Scientific view: HPC application » Scientific algorithm + data » Result

* Computer view: HPC application » Set of finite sequences of computer instructions + digital data » Result
* Computer performance » Higher Instructions Per second/Cycle (IPC) » Shorter execution time

* Almost true -> Eg. higher IPC with scalar instructions

* FLoating point Operations Per Second (FLOPS) » Better metric » 500
But remember the following three things:

1. Itisimpossible to reach the theoretical peak performance of a system;

2. Focusing on the optimization of a single performance metric can reduce other performance metrics (trade-off problem);

3. Asingle performance metric cannot express the overall efficiency of a microarchitecture but we need to consider multiple
metrics;

CINECA
Micro architecture performance optimization

In modern CPUs it is very difficult to understand if my application is
efficiently performing on a specific system (also from an energy point of

view)!

We need HW support from the processor (PMU) -> Only what is measurable
can be improved!

Tools help you to get access to the HW subsystem and automatize routines
but...

Use vour brain! Tools may help, but you do the thinking!!!

CINECA
uarch performance events (very few of them)

* Cycles: countthe number of cycles
* Instructions retired: countthe number of macro instructions executed
* Vector instructionsretired: countthe number of vector macro instructions

* Branches: count the number of branch taken

» Cache miss/hit (at multiple cache levels): count the miss/hit of the cache references -> it show the locality of the
code

* Memory read/write: number of time that a cache line was read/written from the memory

uarch performance events # performance metrics

FLOPS: arithmetic operations executed

Memory throughput: number of bytes exchange with the memory

IPC: instructions per cycle -> this metric show the macro instruction throughput of the microarchitecture

Vectorization ratio: percentage of how many vector instructions are retired wrt the total instructions

CINECA
Performance Monitoring Unit (PMU)

The CPU supports you with the PMUs!

A PMU usually support many events (cycles, instructions retired, etc.) through Performance
Monitoring Counters (PMC).

A PMU can be:
e on-core: microarchitecture events at the core level (cycles, instructions retired, ...)

 off-core: microarchitecture events outside of cores (memory read/write, ...)

‘ ‘ H PMCs can be:
eoCbex | » fixed: can be only enabled or disable and profile a specific event
. - * configurable: can monitor many events
e = e e PMCs are usually configurable only at kernels level
R S Usually, CPUs provide at user space some assembly instructions

4 Intel® QPI links

with low overhead (see rdpmc()) to read PMCs ;

CINECA
Enter Linux perf

 Official Linux profiler
e Built on top of kernel infrastructure (ftrace)
e Source and docs in kernel tree

* Provides a plethora of profiling/tracing features at all system levels
e user, kernel, CGROUP, etc...

* Most important for us: a comprehensive toolbox to gain workload
execution insights via PMCs

* Low overhead*
* Tunable
e 1-2% counting mode, 5-15% sampling w/multiplexing

* Nowak, Andrzej et al. “Establishing a Base of Trust with Performance Counters for Enterprise Workloads.” USENIX Annual Technical Conference (2015).

Linux perf_events Event Sources

CINECA

~

r/
Dyne?mlc Tracepoints syscalls: PMCs
Tracing
extd: Oberating Svst sock: // SChiéz cycles
A perating system / t‘-fls : 1 instructions
icati signat: branch-*
Applications / / timer: L1%
workqueug:
uprobes System Librarieﬁ / T LLC-*
X System Call Interface / y CPU l
Int
File Systems TCP/UDP A 1
kprobes > kmem:
A Volume Manager IP Virtual «— vmscan: Memory
Block Device Interface Ethernet 4 Memory writeback Bus
Device Drivers
v / ‘\) . DRAM
jbd2 : f net: 1rq:
block: scsi: skb: T
mem-load
mem-store
Software Events cpu-clock page-faults
cs migrations minor-faults
major-faults

pert stat/record format

S perf record -a -F 4000 -e L1-dcache-load-misses,L1-dcache-loads -- SAPP
| J 1 J 1

A A T

events
sampling frequency, which events

scope
which sources we want to take into account

action
record (sample), stat (count)

CINECA

12

CINECA
What about energy and power?

 We are very unlucky!

* No standard mechanisms/APIs/performance counters
* Different system = different power/energy monitors

e Often only root can have access

e Several power domains

* Metric to measure energy efficiency: FLOPS/W

CINECA

Intel power management - RAPL

Intel CPU implements hardware power controller called Running Average Power Limit (RAPL)

Power Domains

Package Domain: monitor/limitthe power consumption
' ' ' ' ' ' ' ' ' for the entire package of the CPU, this includes cores and

uncore components.
DRAM

the cores of the CPU.

PACKAGE oD . _ o _
Bl = DIRLORERD Drivmomn mormr e e et
Tore Tore Tore B (no client)

D D D
Uncore - o PP0O/Core Domain: is used to monitorand limit the only to
| PPO/CORE Power Plane |

PPO/CORE Power Plane

Machine Specific Registers: MSR address space 0x600 — 0x640
Sysfs Interface: /sys/devices/virtual/powercap/intel-rapl/intel-rapl:X/intel-rapl:0:Y X=socket_id, Y=power_domain ,

P

:is used to monitorand limit the
power only the graphic component of the CPU (no server).

CINECA

IBM Power8/9 Power Management - OCC

Main Memory

l

P8 Cores
x12

P8 Module

Voltage Rails Sl

%}
8
%
|

¥

Bulk Power

Power Measurement Hardware

SPI2VID
(VRM)

Voltage Adjust

12C

BMC

What is the On-Chip Controller (OCC)?

405 microcontrollerwith 512k dedicated RAM
Hardware/Firmware that controls power, performance &
thermal (independent micro OS)

Can communicate in band with the host through the main
memory

What does OCC do?

Reads/controlssystem power (CPUs, GPUs, board, etc.)
Reads/controlschip temps (CPUs, GPUs, board, etc.)
Enables efficient fan control

Provides thermal protection

Power Capping

Fault Tolerance

Energy saving

Performance boost

In-band: through Linux occ-hwmon kernel module: /sys/firmware/opal/exports/occ_inband_sensors + C data structs that define the
405 memory address space (https://www.kernel.org/doc/html/v5.9/hwmon/occ.html, https://github.com/open-power/occ)

Out-of-band: through the BMC and IP network communication

15

https://www.kernel.org/doc/html/v5.9/hwmon/occ.html
https://github.com/open-power/occ

CINECA
Cavium ThunderX2 Power Management - TX2MON

Cavium ThunderX2 processor implement a similar RAPL/OCC controller

Unfortunately, we don't have too much information on it, but we know that is possible
to monitor the following power domains:

Core: voltage and power consumed by all cores on the SoC.

SRAM: voltage and power consumed by internal SRAM on the SoC.
Internal memory: voltage and power consumed by the LLC ring on the SoC.
SoC: voltage and power consumed by miscellaneous SoC blocks.

memory address space (https://github.com/Marvell-SPBU/tx2mon)
Out-of-band: through the BMC and IP network communication

l I In-band: through Linux TX2MON kernel module: /sys/devices/platform/tx2mon + C data structs that define the controller

https://github.com/Marvell-SPBU/tx2mon)

CINECA
So, how can we collect power/energy information
from different systems?

* Not easy at all!

* For this reason, we developed COUNTDOWN (CINECA + UNIBO project)

« COUNTDOWN instruments the application at execution time and collect information on the
application workload and on the energy/power consumption of the system

app.x libcntd.so libmpi.so
libentd.so M ain(}{ M PI_%CALL_NAME%(){ PMPL_Init(){...}
/* Initialize the MPl environment */ Prologue()
I MPI Interface I MPI_Init() PM PI_%CALL_NAME%() PMPI_Comm_size() {...}
Epilogue()
[* Getthenumber of processes */ } PMPI_Comm_rank() {...}
MPI_Comm_size(&size)
Prologue()} PMPI_Finalize(){...}
/*Gettherank */ Profiling()
M PI_Comm_rank(&rank) Event(START)
} MPI_Init() {...}
/*Printa helloworld */ L w0 L
. . . printf("Hello worldfrom rank “ € c Epilogue()} € c MPI_Comm_size(){...}
F|ne—gra|n Coarse-grain “%d, size %d\n“, rank, size) 2 < Event(END) 2 £
Profiler Profiler Callback = Profiling() Z3 MPI1_Comm_rank({...}
/* Finalizethe MPlenvironment */ }
. MPI_Finalize 7 MPI1_Finalize(){...
oung | e] || e 4

O COUTDOWN: https://github.com/EEES|ab/countdown .

https://github.com/EEESlab/countdown​

CINECA

How can | use perf metrics? The roofline model

A

Attainable Flop/s

v
3 V&

Peak FLOP/s

. 4
.‘z/

g4 Bandwidth-bound
g |

Y
7 l

5
4|

Compute-bound

Arithmetic Intensity (FLOP: lByte)

>

Is performance limited by compute or data movement?

Y-axis: performance in FLOPS

X-axis: Arithmetic Intensity Al (FLOP/Byte)

Ratio between total FLOP and total byte exchange
with main memory

Measure of data locality (data reuse)
Typical machine balance is 5-10 Al
Stream TRIAD: 0.083 Al (2 FLOP per 24 bytes)

Application/kernel near the roofline are making good
use of computational resources

Compute bound: >50% of peak performance
Bandwidth bound: >50% of Stream Triad

Bad performance:

Insufficient cache bandwidth

Bad data locality

Integer heavy code

Lack of FMA

Lack vectorization 18

CINECA
Drill down: identify bootlenecks with TMAM

* Top-down Microarchitecture Analysis Method

e first attempt by Intel at a simplified approach

* hierarchical drill-down method guided by PMCs

 goal: identify the real bottleneck WRT micro-architecture

CINECA
TMAM: high level breakdown

Uop
Allocate?
Yes) No
: I)
' | The frontend is not delivering enough uops per
Uop Ever Back End cycle while the back end of the pipelineiis ready
Retires? Stalls? to acceptuops
Successfully delivered uops who Yes No Yes No
eventually do retire
v \ 4)) 4 h 4
v 7 Y \‘ 5
. Bad Back End Front End
Retiring .
Speculation Bound Bound

Tracks uops that never retire or allocation slots
wasted due to recovery from branch miss-prediction
or clears

No uops are delivered due to lack of required
resources atthe back end of the pipeline

20

CINECA
TMAM: low level breakdown

Pipeline Slots
Not Stalled Stalled

‘./ \ .‘/ \\‘ | '\\ 7 \
Retiring | Bad Speculation FrontEndBound| BackEndBound
YV Y Voo o I 8 Y Y Y
| V5| Branch |Machine| Fetch | Fetch | | |
w@ Mspredicc | Cdear || latency | Bandwicth | |
r Y rY-v \/. V- \V'Y YVYTYTY S
3 387w 2| 2 |o Beuton o & Bt

> |2 LS8z § g |2 Cfw » w

> = »lgs 7 Z |5 pats £S89 o o Moy

g |® =288 4| 5% Ujitn B85 5 S
7 tm‘ﬁl‘a \‘I—\J‘N--“ Ilzatlml“ o a o Bomd
- v LACA A dh A A AN A A AL
[(Y1) Y

< w 2 o Q —

A SSE 2555
ol b 38 @ 5333
WV.‘ iy "\/‘ | \u; | v) x{/f v

21

CINECA

Supercomputers

#9*Marconil00 — IBM Power9 + Nvidia V100 #47* Marconi— Intel Xeon 8160 SkylakeX

& Y "N L N et X
¥ R 2 y] -~ S 2
d N P » { . . s

500

The List.

500

The List.

*at ranking time

CINECA

Why did we select these supercomputers?

Peak

Operating Peak Memor Peak Energy
Cores SMT Frequency FLOPs Ban dwi\c;th Efficiency Characteristic
H FLOP FLOPs/W
(GHz) (GFLOPs) (GB/s) (GFLOPs/W)
Intel x86-64 24 OFF 2.1 4(6) 1612 120 150 10.75 Unbalanceon
Xeon 8160 (AVX-512) the compute
IBM Power ISA 16 x4 3.8 6 486 160 250 1.94 Unbalanceon
Power 9 the memory
Cavium ARMv8.1 32 OFF 2.5 4 640 160 200 3.20 Unbalanceon
ThunderX2 the memory
AMD x86-64 64 OFF 2.25 4 (8) 2662 190 225 11.82 Good overall
7742 Epyc (AVX-256) balance

*nodes of all the systems are double sockets

Applications & Software Stack

S

&
@
S5

CINECA

Software Stack

www.flapw.de]
@ u U H N _I_ u M E S P R E S S l] CPU Compilator MPI BLAS & LAPACK ScalLAPACK FFTW

I e u r Intel GCC9.3 OpenMPI MKL 2018 MKL 2018 MKL 2018

Xeon 8160 4.1.1
]
IBM GCC9.3 OpenMPI ESSL 6.2.1 Netlib- FFTW 3.9
——— Power 9 4.1.1 OpenBLAS 0.3.18 scalapack 2.1.0
Cavium GCC9.3 OpenMPI ArmPL 20.3 Netlib- FFTW 3.9
ThunderX2 41.1 ScalaPACK2.1.0
AMD GCC9.3 OpenMPI AMDblis/Flame AMDScalaPACK AMDFFTW
7742 Epyc 4.1.1 3.0 3.0 3.0
: a m b 0 “"ﬁ E Other accessory libraries:
, i N N S I e S a * Netcdf Fortran4.5.3 e ELSI2.7.1
* NetcdfC4.8.1
™ HDF51.10.7 24

Time [sec]

Percentage [%]

20000

15000

10000

5000

@UUHNTUMESPRESSD

a) QE - Execution Time

b) QE - AVG IPC

6.4.1
I 6.7-MaX

Vectorization Ratio [%]

DGX Marconi Armida Marconil00

(Rome) (SkylakeX)ThunderX2) (Power9)

00 d) QE - App Time vs MPI Time

80

60

40

20

I

APP time
mm MPI time

i)

Armida Marconil00
(SkylakeX)(ThunderX2) (Power9)

e) QE - FLOPs

c) QE - Vectorization Ratio

Marconi

(SkylakeX)

f) QE

I 6.7-MaX

- Energy Efficiency

B 6.7-MaX

Performance [GFLOPs]

=
o
o
o

DGX Marconi Armida Marconil00

(Rome) (SkylakeX)XThunderX2) (Power9)

Energy Efficiency [GFLOPs/W]

o

B 6.7-MaX

Armida Marconil00
(SkylakeX)XThunderX2) (Power9)

Marconi
(SkylakeX)

CINECA

Configuration:

* Single node experiments

* Pure MPI (one MPI rank per core)

« We compared two different version
of the code

Behaviors:

* Execution time: proportional with
the peak FLOPS (Power9?)

* |PC: 22 limited by the number of
vector ALUs (2)

* Vectorization ratio: 2100% (Power9?)

* FLOPS and FLOPS/W: proportional
with the peak FLOPS

Conclusions:

* QEis compute bound!

* High vectorized codes work pretty
well!

* Intel parchs ¥

25

Time [sec]

Percentage [%]

5

Bi

a) BigDFT - Execution Time

175 1.8.2
150 m 191
125
100
75
50
25
0 DGX Marconi Armida Marconil00

(Rome) (SkylakeX)(ThunderX2) (Power9)

108) BigDFT - App Time vs MPI Time

80
60
40
20
APP time
mm MPI time

DGX Marconi

Armida Marconil00

(Rome) (SkylakeX)(ThunderX2) (Power9)

5000

4000

3000

2000

Performance [GFLOPs]

1000

b) BigDFT - AVG IPC

N 1.8.2
1.9.1

nlinl

DGX Marconi Armida Marconil00
(Rome) (SkylakeX)(ThunderX2) (Power9)

e) BigDFT - FLOPs

—
]

1.8.2
1.9.1
Peak

——————

DGX Marconi Armida Marconil00
(Rome) (SkylakeX)(ThunderX2) (Power9)

Vectorization Ratio [%]

Energy Efficiency [GFLOPs/W]

00 c) BigDFT - Vectorization Ratio

80

60

40

20

I 1.8.2
I 191

Marconi
(SkylakeX)

Armida
(ThunderX2)

Marconil00
(Power9)

f) BigDFT - Energy Efficiency

12
L /1 182
T B 1.9.1
1 1 !
0 i :i i 1"75 Peak
I 1 1
gli i
1 1 1
1 11 |
1 |: 1
6 : :l :
1 11 \
1 11 1
1 1 1
1 11 1
4
1 1! I ermmae———
1 1! 1 1 1 1
R U
21 i i 1 1 i [
P P P
1 1
olb=oibesd P—ipesl e |
Marconi Armida Marconil00
(SkylakeX) (ThunderX2) (Power9)

CINECA

Configuration:

* Single node experiments

e MPI& Openmp

« We compared two different version
of the codes

Behaviors:

* Execution time: proportional with
the peak memory bandwidth and
the capacity to move data!

* |PC: <2 limited by the memory

* Vectorization ratio: <15% this
workload is very difficult to
vectorize!

* FLOPS and FLOPS/W: limited by the
memory, are these good metrics?

Conclusions:
e BigDFT is memory bound!

. 1BM Power9 ' BigDFT
26

Roofline — IBM Power9

Roofline model - MarconilO0

103 .

Performance [GFLOPSs]

973 GFLOPs

QE-6.4.1
QE-6.7-MaX
Yambo-4.5.3
Yambo-5.0.4
CP2K-6.1
CP2K-8.1
Siesta-4.0.2
Siesta-MaXx-1.3.1
Fleur-MaX-R3.1
Fleur-MaX-R5.1
BigDFT-1.8.2
BigDFT-1.9.1

*single node experiment results

10° 10!
Operational Intensity [FLOPs/Byte]

CINECA

28

TMAM — Intel SkylakeX vs ARM ThunderX?2

Marconi Intel Skylake

100

80

TMAM [%]

*single node experiment results

QE

Yambo CP2K

Siesta

I Back-end

Retiring

Il Bad speculation

Front-end

Fleur BigDFT

TMAM [%]

ARMIDA ThunderX2

100

80

60

40

20

QE

Yambo

CP2K

Siesta

I Back-end

Retiring

Bl Bad speculation

Front-end

Fleur BigDFT

CINECA

29

CINECA

Conclusions & Take away messages

* Application workload have different performance on different
architectures

* Lack of microarchitecture efficiency limits the application
performance more than scalability

* Performance models can help you to understand how application use
the system resources

* Tools may help to spot inefficiencies, but you do the thinking!

William H. McRaven: “If you can't do the little things right, you will never do
the big things right.”

30

CINECA
But what about GPUs?

THAT'SA STORY FOR ANOTHEB

w\"
Q

‘l’

-
A

Thank you for yeurattention!

