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Abstract—Nowadays, two groundbreaking factors are emerg-
ing in neural networks. Firstly, there is the RISC-V open
instruction set architecture (ISA) that allows a seamless imple-
mentation of custom instruction sets. Secondly, there are several
novel formats for real number arithmetic. In this work, we
combined these two key aspects using the very promising posit
format, developing a light Posit Processing Unit (PPU-light).
We present an extension of the base RISC-V ISA that allows
the conversion between 8 or 16-bit posits and 32-bit IEEE
Floats or fixed point formats in order to offer a compressed
representation of real numbers with little-to-none accuracy
degradation. Then we elaborate on the hardware and software
toolchain integration of our PPU-light inside the Ariane RISC-
V core and its toolchain, showing how little it impacts in terms
of circuit complexity and power consumption. Indeed, only
0.36% of the circuit is devoted to the PPU-light while the full
RISC-V core occupies the 33% of the overall circuit complexity.
Finally we present the impact of our PPU-light on a deep neural
network task, reporting speedups up to 10 on sample inference
processing time.

Index Terms—alternative representations of real numbers,
posit arithmetic, hardware synthesis, RISC-V processors, in-
struction set architecture extension, scalar operations

I. INTRODUCTION

REcently, RISC-V rose as an open-source alternative
CPU architecture [1]–[3].

It quickly became an important competitor of Intel, AMD
and ARM CPUs (both for 32 and 64-bit variants) for being
royalty free. Several companies in industry have already
supported and funded the project. Among them we can find
star companies like Intel, Microsoft and ST Microelectronics
[4]. The most important and crucial feature of RISC-V is its
open-source instruction set architecture (ISA). This means
that anyone can modify it by extending the ISA with his
very own instructions and functionalities: this feature is
fundamental, since it allows the design of very low-latency
co-processors, functional units and accelerators without the
need to consider them as external devices that require
memory mapping and interrupts.

In the latest years, several representations for real number
operations have been proposed by industry and research such
as Intel with Flexpoint [5, 6], Google with BFLOAT16 [7],
IBM with DLFloat [8], NVIDIA with TensorFloat32 [9] and
Facebook with logarithmic numbers [10].
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One of the most promising alternative to IEEE 32-bit
Floating-point standard is the posit™ format [11]. Posits
proved to be able to match single precision (i.e. IEEE
32-bit floats) accuracy (in machine learning and neural
network tasks) performance with only 16 bits used for the
representation both in our previous works and in independent
research [12]–[14]. Moreover with just 8 bits, the overall
performances did not degrade critically, as shown in [15, 16].

In this work, we envision the adoption of these two
disruptive innovations (RISC-V open architecture and posit
arithmetic) to enable posit support inside a RISC-V core
in a transparent way, without changing other component
behaviour.

Our goal is to seamlessly extend RISC-V with a Posit
Processing Unit (PPU) without interfering with the pre-
existent architecture (e.g. without modifying or removing
already existent floating point support).

In this paper we aimed to add the fewest instructions
possible to the RISC-V architecture, such that we could
perform compression and decompression of weights using
the posit format for storage. It is clear that, since we
did not want to entirely replace floats, we benefit from
having an interchange and compressed format for moving
information. Furthermore, we analyze what could happen
when we employ this compression in a “real-time” approach,
and not only on the storage. Of course, adding additional
instructions impacted the performance, since the effort of a
full-posit processing cannot be stand without a full-hardware
support for posits (i.e. full PPU with all the arithmetic
operations). However, we believe that the PPUlight is a
milestone in the road towards full posit computing, since
it enables posit-support with the most lightweight approach.

The paper is structured as follows: in Section 2 we
briefly introduce posit numbers and some of its interesting
properties. In Section 3 we present our C++ posit library and
its overall software architecture. In Section 4 we summarize
the key aspects of the RISC-V instruction set architecture
(ISA) and in Section 5 we elaborate on our posit extension
for the RISC-V ISA. In Section 6 we provide the design
strategies behind the logic circuit implementation of selected
posit operations and metrics of the implementation of said
circuit on a Digilent Genesys 2 FPGA board. In Section
7 we present validation results on the official RISC-V
instruction emulator and outcomes of the integration of
our PPUlight core inside the Ariane open-source RISC-V
core. Furthermore we present benchmarks on common deep
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learning scenarios. Section 8 contains a summary and the
conclusions of this work.

II. RELATED WORKS AND CONTRIBUTIONS

A. Related Works

In [17] the authors present a fully functional posit float-
ing point unit and RISC-V posit extension exploiting and
overloading the already existent RISC-V IEEE 32-bit float
instructions. The authors introduce a posit unit with 32 32-
bit posit registers with an additional status register. The
final design is a 32-bit posit co-processor that is decoupled
from the RISC-V core execution pipeline. The proposed unit
reportedly occupies 3507 slice LUTs and 1294 slice registers
on an Artix-7-100T Xilinx FPGA running at 100 MHz.

In [18] the authors present a benchmark platform for
alternative real number arithmetic, including posits. They in-
troduce two components: i) Melodica, a complete posit unit
implementing several arithmetic, quires and fused multiply-
add operations; ii) Clarinet, a RISC-V core with Melodica
support. The authors leveraged the custom op-code space
in RISC-V to add custom instructions, as well as a custom
C compiler toolchain. Furthermore they added a new set of
posit registers with parametric posit size.

In both works there is the trend of altering the pre-
existent RISC-V architecture by adding new registers to the
instruction set architecture. As we describe in the section
hereafter, our aim is to provide a seamless integration of our
PPU component with minimal architectural modifications as
well as a complete software tool-chain that do not need a
custom compiler to leverage the new instruction set.

B. Our Contribution

Similarly to previous works, we leveraged the RISC-V
custom opcode space to introduce new posit instructions
inside a RISC-V processor core. However, we decided to
diverge from previous works in two different ways, one at
hardware level and the other at software level:

• At hardware level we decided to keep our PPUlight

as light as possible, in order to adhere to RISC-
V minimalism, without bringing too much additional
complexity to the RISC-V core. Indeed we did not
introduce new posit registers but we decided to re-use
the integer ALU registers also for posit operands. This
simplified extremely the integration of our PPUlight

design inside the RISC-V core. On the other hand
we only implemented conversion instructions between
posits, IEEE 32-bit floats and fixed-points, enabling
quire support at a software level. Note that, once
converted to a fixed-point, the sum of two posits is
simply the sum of two integers: this means that we
can perform true posit floating-point-like computations
without involving the IEEE FP32 floating point unit
at all. As a trade-off, this is, of course, not a lossless
conversion between posits and fixed-point format.
Furthermore, we decided to support only 8 and 16
bit posits. This is because 16-bit posits proved to be

as good as IEEE floats in deep learning applications
[12]–[14]. Furthermore, having support for 8-bit posits
allows very fast arithmetic without having significant
accuracy degradation ( [15, 16]).

• At software level we decided not to modify any element
of the C compiler toolchain, making the overall soft-
ware library completely portable on any modern RISC-
V C compiler. We indeed make use of inline assembly
instruction emission directly from C code, then wrapped
in a high-level intrinsic interface. Everything is finally
self-contained inside a single header file.

As a consequence of these two points we consider our
light PPU can be used in two different ways (see Figure 1):

• If the RISC-V processor embeds an FPU the PPUlight

can be used as a wrapper, providing a data compression
by a factor up to 4, with little accuracy degradation. The
cost of compression and decompression is the cost of
converting a posit to a float and vice-versa.

• If the RISC-V processors does not embed an FPU or we
want to exploit only the ALU, the PPUlight can function
as a wrapper of fixed-point representation. Indeed, once
we have converted between posit and fixed-point, the
basic arithmetic operations can be computed just with
the ALU. Also note that, for half of the posit domain,
that is the [−1, 1] range, the conversion between posit
and fixed point is a simple left shift of 2 positions
followed to 0 padding on the most significant bits to
reach desired fixed-point size.

Figure 1 shows an example of the two possible ap-
proaches: in the top one we employ the PPUlight alongside
the FPU and the ALU, supporting both floating point and
fixed point as a back-end of our operation. In the bottom
one, we put the PPUlight in a scenario where only the ALU
is present, thus enabling posit computation with a pure fixed-
point approach. Note that in both cases, our approach is non-
disruptive. This means that the existent architecture remains
untouched, with just the addition of a new module. From a
software level perspective this offers the highest transparency
possible.

A summary of the different possible operation implemen-
tations is shown in Table I. More operations that do not need
encoding and decoding are summarised in Table II.

TABLE I: Basic arithmetic operations for posit numbers in
our approach.

Operation Functional Unit (back-end) Conversion needed
Sum FPU or ALU (fixed point) yes

Product FPU or ALU (fixed point) yes
Multiplication FPU or ALU (fixed point) yes

Division FPU or ALU (fixed point) yes
Comparison ALU (integer comparison) no

III. POSIT NUMBERS AND CPPPOSIT LIBRARY

Posit™ numbers have been presented for the first time by
John L. Gustafson in [11]. This novel format is fixed length
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Fig. 1: A visualization of the two possible use cases of the
PPUlight.

one (length and exponent length can be configured), with up
to 4 fields as reported in Figures 2 and 3:

• Sign field: 1-bit
• Regime field: variable length, composed by a string of

bits equal to 1 or 0 ended, respectively by a 0 or 1 bit.
• Exponent field: at most es bits
• Fraction field: variable length mantissa

012345678910111213141516171819202122232425262728293031

S Regime(1..rebits) Exponent (0..esbits) Fraction (0...)

Fig. 2: Illustration of a posit〈32, 11〉 data type.

Given posit 〈nbits, esbits〉, represented by the signed
integer X and let e and f be respectively the exponent and
fraction values, the real number r represented by X encoding
is:

r =


0, if X = 0

NaN, if X = −2(nbits−1)

sign(X) · useedk · 2e · (1 + f), otherwise
(1)

where useed = 22
esbits

and k is the value of the regime.
The regime field is run-length encoded. This means that
the value represented by this field depends on its length.
In particular the regime length is the number of identical
subsequent bits stopped by the opposite valued bit. For
example, given a regime 00001, its length will be 4. The
value k depends on the regime length l and the regime
identical bit value b:

k =

{
−l, if b = 0

l − 1, otherwise
(2)

Figure 3 shows an example of posit decoding. Given the
sequence on top of the figure, after detecting it starts with

one 1, we have to compute the 2’s complement of all the
remaining bits (passing from 001-110-111011001 to 110-
001-000100111). Then we can proceed to decode the posit.
The regime bit-string is 110, therefore the regime length
l is 2 (two consecutive 1 and a 0, b = 1). Thus, the k
value is 1, following Equation (2). The exponent bits are
001 that translates into an exponent value of 1. Finally, the
mantissa bits are 000100111, representing the integer 39 and
the mantissa length is 9→ 29 = 512, thus the fraction value
is 39

512 . The associated real value is therefore: −2561 ·21 ·(1+
39/512). The final value is therefore −512 · (1 + 39/512)
= −551 (exact value, i.e., no rounding, for this case).

0123456789101112131415

1 0 0 1 1 1 0 1 1 1 0 1 1 0 0 1

0123456789101112131415

S R E F

111 0 001 000100111

Fig. 3: An example of a 16-bit Posit with 3 bits for the
exponent (esbits=3).

As reported in [16] by the authors, this novel format
introduces new interesting properties with esbits = 0.
In this case it is possible to implement fast versions of
common operations (possibly with slight approximation);
these particular versions can be computed just by using
the arithmetic-logic unit (ALU) of the CPU, since they
only employ bit manipulation and basic integer arithmetic.
Among these operations we can accelerate, we can find
the double and half operators (2x and x/2), the inverse
operator (1/x) and the one’s complement (1 − x). As also
seen in our past work this kind of implementation allows
the vectorization of several posit operations by reusing the
integer vector registers and functional units.

Software support for posits is enabled by our cppPosit
library [19], developed in Pisa and maintained by the
authors of this work. The library uses templatization to
define different posit configurations during compilation. The
posit operations are put into four different levels (L1-L4)
with increasing computational complexity [16]. The first
level L1 is the simplest and fastest and comprises all the
operators in Table II. In this table, approximated column
states whether the operation is an exact or an approximated
result and reporting the requirements to be fulfilled. For
instance notice how 1 − x can be computed using fast
bit manipulations only when x ∈ [−1, 1]. We use three
different back-ends to execute posit operations that cannot
be emulated directly via ALU:

• Floating point back-end, using the FPU;
• Fixed point back-end, exploiting big-integer support (64

or 128 bits) for operations;
• Tabulated back-end, generating lookup tables for most

of the operations (suitable for Posit〈[8, 12], ∗〉 due to
table sizes).
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TABLE II: Most interesting L1 operations implemented in
cppPosit using only the ALU.

DNN Operation Approximated Requirements
2 · x no esbits=0
x/2 no esbits=0
1− x no esbits=0, x ∈ [−1, 1]
1/x yes esbits=0

FastSigmoid yes esbits=0
FastTanh [16] yes esbits=0

FastELU yes esbits=0

IV. RISC-V ISA ARCHITECTURE

The RISC-V [1] architecture is a modular, open-source
and royalty-free instruction set architecture (ISA) and com-
prises both 32 and 64-bit architectures. The ISA is built
out of small sub-ISAs. The base subsets are referred as
base integer instruction sets and identified by the letter I.
Furthermore, a RISC-V based architecture has additional
extensions; some extension are frozen, since their encoding
and behaviour has been already ratified and cannot change
during the current revision of the ISA. These extensions
are integer multiplication/division operations (M), single (F),
double (D) precision floating point operations (following the
IEEE 754 Float standard) and atomic instructions (A). In
order to access the RISC-V architecture for customization
of the ISA and program execution we have the following
two choices, on which we also elaborate more in the next
sections:

• The RISC-V ISA simulator (also known as Spike [20]).
This simulator fully emulate the instruction set of a
64-bit RISC-V with all the extensions said above, but
also with vectorization support. It brings a high-level
interface to customize the instruction set, simply adding
the opcodes and the behaviour of the instructions, all
in C++. In order to execute compiled binaries on the
Spike simulator, we must pass through the RISC-V
proxy kernel, that embeds the Berkeley Boot Loader
and allows us to execute statically linked RISC-V
binaries. This also comes with a customizable high-
level interface where we can define the instruction
opcodes. The combination of Spike and the proxy
kernel allows us to execute any RISC-V binary on
any other architecture for which it is compiled (e.g.
x86) machine. To compile and link RISC-V binaries we
used the official GCC cross compiler from the RISC-
V organization repository. This allowed us to produce
RISC-V binaries on a x86 host.

• The Ariane RISC-V FPGA core. This core is a 6-stage
(2-stage speculative frontend, instruction decoding, is-
suing, executing and commit), single issue, in-order
CPU. It embeds a 64-bit RISC-V instruction set with
I, M, A and C subsets. It also support M, S and U
privilege levels, allowing the possibility to execute any
Unix-like operative system on it. The core is completely
open-source and extensible using SystemVerilog.

V. RISC-V POSIT ISA EXTENSION DESIGN

We extended the RISC-V ISA to support posit operations
keeping in mind the minimalism of RISC-V. The core idea is
to implement basic posit operations (addition, multiplication
and others) using other wider types as backend. Therefore,
we did not introduce new ad-hoc registers for posits. Instead,
we aimed to re-use existing floating point and integer
registers, providing conversion instructions from/to floating
point (on float registers) and fixed point (on integer registers)
numbers.

Note that, unlike floating point numbers, when converting
between posit and fixed point, the size of the latter depends
on the posit characteristics. From now on we will refer to a
fixed point with N overall bits and N/2 bits for the mantissa
as fx〈N〉. Then, a posit〈8, 0〉 will be converted to fx〈16〉, a
posit〈16, 0〉 to fx〈32〉 and a posit〈16, 1〉 to fx〈64〉.

Since we employ posits with an overall size of 16 or 8
bits, we are performing a lossy data compression by a factor
2 or 4 if we start from an IEEE FP32 format (maintaining
a similar inference accuracy, in machine learning and neu-
ral network tasks, as demonstrated in our previous works
[15, 16]. Moreover, even if we use a wider backend to
perform computations, the data expansion is performed only
within the posit processing unit. Therefore, we are trans-
ferring compressed data from memory to CPU integer/float
registers. This means that just by using posits as a lossy
compressed information storage can reduce the amount of
data transferred up to a factor 4.

The instruction encoding uses the suffix ’b0001011
(6 least significant bits) that is reserved for custom ISA
extension.

As listed in Table III, we added the following instructions:
• Floating point and posit conversions

– FCVT.S.P8/FCVT.P8.S:
Float to/from posit〈8, 0〉 conversion

– FCVT.S.P16.0/FCVT.P16.0.S:
Float to/from posit〈16, 0〉 conversion

– FCVT.S.P16.1/FCVT.P16.1.S:
Float to/from posit〈16, 1〉

• Fixed point and posit conversions
– FXCVT.H.P8/FXCVT.P8.H:

fx〈16〉 to/from posit〈8, 0〉 conversion
– FXCVT.W.P16.0/FXCVT.P16.0.W:

fx〈32〉 to/from posit〈16, 0〉 conversion
– FXCVT.L.P16.1/FXCVT.P16.1.L:

fx〈64〉 to/from posit〈16, 1〉
• Posit to posit conversions

– FCVT.P8.P16.0/FCVT.P16.0.P8:
posit〈8, 0〉 to/from posit〈16, 0〉 conversion

– FCVT.P16.1.P16.0/FCVT.P16.0.P16.1:
posit〈16, 1〉 to/from posit〈16, 0〉 conversion

– FCVT.P8.P16.1/FCVT.P16.1.P8:
posit〈16, 1〉 to/from posit〈8, 0〉 conversion

Once the instructions have been encoded we need to
provide a high-level interface to use them. The idea is to
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TABLE III: Instruction listing for RISC-V RVXposit extension

31 27 26 25 24 20 19 15 14 12 11 7 6 0
1100000 00010 rs1 000 rd 0001011 FCVT.S.P8
1100000 00011 rs1 000 rd 0001011 FCVT.S.P16.0
1100000 00011 rs1 010 rd 0001011 FCVT.S.P16.1
1101000 00010 rs1 000 rd 0001011 FCVT.P8.S
1101000 00011 rs1 000 rd 0001011 FCVT.P16.0.S
1101000 00011 rs1 010 rd 0001011 FCVT.P16.1.S
1100000 00010 rs1 001 rd 0001011 FXCVT.H.P8
1100000 00011 rs1 001 rd 0001011 FXCVT.W.P16.0
1100000 00011 rs1 011 rd 0001011 FXCVT.L.P16.1
1101000 00010 rs1 001 rd 0001011 FXCVT.P8.H
1101000 00011 rs1 001 rd 0001011 FXCVT.P16.0.W
1101000 00011 rs1 011 rd 0001011 FXCVT.P16.1.L
1101000 00010 rs1 001 rd 0001011 FXCVT.P8.H
1101000 00011 rs1 001 rd 0001011 FXCVT.P16.0.W
1101000 00011 rs1 011 rd 0001011 FXCVT.P16.1.L
1100000 00010 rs1 100 rd 0001011 FCVT.P8.P16.0
1100000 00011 rs1 100 rd 0001011 FCVT.P16.0.P8
1101000 00011 rs1 111 rd 0001011 FCVT.P16.1.P16.0
1101000 00010 rs1 101 rd 0001011 FCVT.P16.1.P8
1100000 00011 rs1 110 rd 0001011 FCVT.P8.P16.1
1101000 00011 rs1 101 rd 0001011 FCVT.P16.0.P16.1

implement a C intrinsic for each instruction exploiting the
inline assembly __asm__ operator to emit the byte-code
associated to the specific instruction. This approach avoids
us to implement the code generation inside the compiler.
Instead, we let the compiler choose the proper registers for
the intrinsic exploiting C/C++ register allocation with the
keyword register.

Listing 1 shows an intrinsic example for the float to
posit〈8, 0〉 conversion. The many .set directives are used
to set RISC-V register identifiers. The .byte directive is
used to emit the four bytes that compose the instruction.
Comparing the four bytes of the instruction with the encod-
ing in Table III we can see that both rs1 and rd (source
and destination register) are not being explicitly set in the
intrinsic. Finally, the two register allocations in the function
header use the RISC-V standard register names for input and
output passing.

We instrumented the cppPosit library to be compiled
with specific flags to directly use said hardware instructions
instead of using software emulation. For example, without
hardware support the conversion between float and posit
needs a series of bit manipulation, done in software. If we
provide PPU support the same conversion results in a single
call to the FCVT.S.*/FCVT.*.S instruction.

This approach has three key aspects:

• We implemented some core posit operations that can
not be implemented as L1 operations

• We discarded other slow instructions that require ac-
tivation and withdrawal like in an external execution
unit.

• We may seamlessly run in a super-scalar environment
with multiple parallel execution units since we only
used native integer and floating point registers.

Listing 1: Intrinsic example for FCVT.S.P8
i n t f c v t f 3 2 p 8 ( f l o a t a ) {

r e g i s t e r f l o a t p1 asm ( ‘ ‘ f a 0 ” ) = a ;
r e g i s t e r i n t r e s u l t asm ( ‘ ‘ a1 ” ) ;

asm v o l a t i l e (
‘ ‘ ”
‘ ‘ . s e t r f s 0 , 8\ n ”
‘ ‘ . s e t r f s 1 , 9\ n ”
. . .
‘ ‘ . s e t op , 0 xb\n ”
‘ ‘ . s e t opf1 , 0 x0\n ”
‘ ‘ . s e t opf2 , 0 x2\n ”
‘ ‘ . s e t opf3 , 0 x60\n ”
‘ ‘ . b y t e op | ( ( r %[ r e s u l t ]&1) <<7),

( ( r %[ r e s u l t ]>>1)&0xF ) | ( opf1 <<4) |(( r %1&1)<<7),
( ( opf2&0xF ) << 4) | ( ( r%1>>1)&0xF ) ,
( ( opf2>>4)&0x1 ) | ( opf3<<1)”

: [ r e s u l t ] ‘ ‘= r ” ( r e s u l t )
: ‘ ‘ f ” ( p1 ) , ‘ ‘ [ r e s u l t ] ” ( r e s u l t ) ) ;

r e t u r n r e s u l t ;
}

Regarding the real hardware implementation, we used the
Ariane RISC-V core [21] as development base, as described
in next section.

VI. RISC-V POSIT ISA EXTENSION IMPLEMENTATION

A. Circuit design

In order to provide a circuit design for our PPUlight we
considered several key points to simplify the final logic
design:

• IEEE floating point values are encoded in a module
and sign like representation while posits are encoded
using 2’s complement representation. Therefore, when
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converting from IEEE floats we just ignore the sign and
build the positive posit. Then we use the sign to apply
the 2’s complement to the result if negative.

• Given a Posit〈16, 0〉 the size of the regime spans from
a minimum of 2 to a maximum of 15 bits. As a result
the mantissa size spans from a minimum of 0 to a
maximum of 12 bits. This means that, given a 23-
bit mantissa IEEE Float, the 8 least significant bits
of the float are set to 0. The same concepts hold for
Posit〈8, 0〉.

• We can build the Posit〈X, 0〉 regime arithmetically
shifting an appropriate value by the log2 X least sig-
nificant bits of the FP32 normalized exponent. For
Posit〈16, 0〉 we shift the signed integer represented by
215 (8000 in hexadecimal notation, as in Figure 7). For
Posit〈8, 0〉 we shift the signed integer represented by 27.
Furthermore, we always build the regime starting from
the absolute value of the normalized FP32 exponent.
It can be then transformed to the “negative” regime in
case of negative exponent values as in Figure 7. In this
circuit we take the floating point exponent on 8 bits and
produce the regime bits corresponding to that exponent.
In order to generate the regime we arithmetically shift
the signed integer represented by 215 (’h8000) by
the amount specified by the 4 last significant digits of
the floating point exponent. The same procedure holds
for both negative and positive exponents, with just a
negation at the end to restore the correct sign.

• Decoding the regime is particularly interesting since
we need to employ a find first set module (or find first
unset) to evaluate the regime length. The output of the
find first set module is the index i of the highest set bit
(discarding the sign if present). Therefore, as reported
in Figure 5, the regime length is actually computed
as l = 14 − i. At the end, the k-value (which is
the non-normalized floating point exponent) is obtained
from the regime length as −l or l + 1, depending on
the regime “sign”. In the circuit of Figure 5, we take
the regime field and output the corresponding value of
k, that is used in Equation (1) to compute the posit
value. The core part is represented by the two find high
modules that help to compute the number of subsequent
bit set (or unset). If we subtract this number at the
maximum length of the regime (that is 14, or ’he in
hexadecimal notation) we get the actual regime length
l. Finally if we follow Equation (1), we can retrieve k
from l.

In Figure 4 we show a simplified circuit for conversion
from posit〈16, 0〉 to FP32. The 16-bit regime decoder mod-
ule is implemented by the simplified circuit shown in Figure
5. Note how when converting to IEEE floats we firstly
compute the absolute value of the posit number and then
convert it to a floating point one. At the end of the circuit,
we just replicate the bit sign of the posit in the bit sign of
the floating point, being it represented in sign and module.

In Figure 6 we show a simplified circuit for conversion

Fig. 4: Logical circuit for the posit〈16, 0〉 to 32-bit floating
point converter.

Fig. 5: Logical circuit for the posit〈16, 0〉 regime decoder.
K value is the regime value as in (2).
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Fig. 6: Logical circuit for the 32-bit floating point to
posit〈16, 0〉 converter. NaR is Not A Real.

from FP32 to posit〈16, 0〉. The first multiplexer in the
cascade of two multiplexers takes the exponent value as
input; this input acts as a mask to detect Not A Real (NaR)
values. The 16-bit regime encoder module is implemented
by the simplified circuit shown in Figure 7. Note how when
converting from IEEE floats we just ignore the sign and build
the positive posit and then we use the sign to apply the 2’s
complement to the result if negative. Furthermore we build
the different posit fields considering their maximum possible
length without computing any length but the regime one,
making the circuit simpler.

VII. RESULTS

A. Hardware Results (Synthesis Outcomes)

For the hardware implementation we chose to use
the Xilinx Genesys 2 board (equipped with a Kintex 7
XC7K325T-2FFG900C FPGA component). We chose this
board to minimize the implementation effort of our PPU
inside a RISC-V core. Indeed, we used the ARIANE RISC-
V core that was initially designed for this specific board.

Fig. 7: Logical circuit for the posit〈16, 0〉 regime encoder.
Amount is the number of position to shift the other input in
the Arithmetic Right Shift module.

Once we designed the logic circuits for the posit con-
versions we wrapped them in a single functional core. A
simplified example is shown in Figure 8.

Note that all the inputs and the output are connected to
registers to break-down combinatory-only logic chains. It
is crucial how we can reuse the same hardware module
for posit-to-posit conversion when using either 8-bit posit
or 16-bit posit. Indeed, if we convert a posit〈16, 1〉 to a
posit〈16, 0〉 and then we shift the latter of 8 bits right we
obtain the correspondent posit〈8, 0〉. Similarly, if we want
to convert a posit〈8, 0〉 to a posit〈16, 1〉, we can convert the
former to posit〈16, 0〉 beforehand and then finally convert
the latter to posit〈16, 1〉. This is useful, since conversion
between 0 exponent posits is only a shift and conversion
between posit〈16, 0〉 and posit〈16, 1〉 is straightforward.

Synthesised design was then implemented into the same
board. We performed power, circuit complexity and propa-
gation delay (worst case combinatorial propagation delay of
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Fig. 8: Simplified design for the PPUlight core.

TABLE IV: Summary of the impact of the PPU addition in
the synthesized hardware.

Metric Change
Worst propagation delay (worst critical path) unchanged
Total power on FPGA component (Kintex 7) < 0.02W increase
LUT utilisation (w.r.t original design w/o PPU) 1% increase

the PPUlight) report for the PPUlight component:
• Look-up table (LUT) utilisation: 747/203800 (0.36%)

LUTs used.
• Component latency: 6.332ns (worst propagation delay).
Finally, we integrated the new instruction set architecture

inside the Ariane RISC-V core and we synthesized it for
the Xilinx Genesys 2. We obtained the following quality
parameters:

• Clock frequency: 125MHz
• Total power on FPGA component (Kintex 7): 2.056W
• Look-up table (LUT) utilisation: 63805/203800

(31.54%) LUTs used.
Table IV shows the impact of the addition of the PPUlight

inside the ARIANE core. As reported the impact of the
PPUlight component is minimal inside the overall architec-
ture.

The PPUlight core is connected to the fu_data_i
instruction data “bus” that is connected to all the main
functional unit (e.g. ALU, FPU) inside Ariane. The 7-bit
operator lane of the said lane controls the operation selected
inside the PPUlight, while the single 64-bit operand data
is multiplexed and converted to the 3 different lengths for

TABLE V: Accuracy degradation on inference task when
using compressed format on different datasets and network
models.

LeNet EfficientNetB0
MNIST GTRSB CIFAR100 (top-1)

FP32 98.83% 91.8% 82.2%
posit〈16, 1〉 98.83% 91.8% 82.2%
posit〈16, 0〉 98.50% 90.5% 82.2%
posit〈8, 0〉 98.34% 90.4% 82.1%

computation. The output is then connected to the output line
that goes into the scoreboard module.

B. Software Results on DNN Benchmarks

1) ISA Simulation and validation: We validated the new
ISA assuring the coherency between the two version of
cppPosit, compiled with or without the PPUlight support.
In the former case, the ISA instruction were emulated in the
Spike simulator and the operation results were compared to
the latter case in which posit operations were implemented
completely in cppPosit.

Secondly we compared the two version of cppPosit inside
the tinyDNN C++ DNN library (our custom version is
available at [22]), with a synthetic dataset in a 10-layer
deep neural network. This was aimed to provide timing
performances for the emulated instruction set and to compare
them with the default implementation of posit operations.

For simulation and emulation purposes we employed the
Spike RISC-V official Instruction Set Architecture emu-
lator. This emulator was configured to run the RISC-V
RV 64GC stack with the newly introduced posit instruction
set. The Spike simulator ran on a Intel(R) Core(TM)
i7-9700 CPU @ 3.00GHz processor under a Linux 5.4
environment.

2) DNN Accuracy results: To assess the variation of
accuracy with the compressed formats, we tested two simple
datasets (the MNIST dataset [23] and the GTSRB datasets
[24]) on the networks shown in Figure 9, pre-trained using
32-bit floats. Furthermore, to test the posit compression in
a complex scenario, we used the 237-layer deep Efficient-
NetB0 model described in [25]. In particular we used the
pretrained weights from the EfficientNet authors to extract
features from the CIFAR100 dataset and perform a transfer
learning task on the fully-connected top layer of the network
(using 32-bit floats), obtaining similar results to the state-
of-art described in the EfficientNet paper. We then tested
the model using the posit compression to assess accuracy
variations. Table V shows the outcomes of said benchmark.

3) Emulation Results: Table VI shows the results of
image inference times on tinyDNN using a 10-layer convo-
lutional neural network (see Figure 9), on 32× 32 synthetic
images.

Timing performance is referred to the inference time of a
single 32×32 image, measured instrumenting the code with
the C++ chrono directives.
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Fig. 9: Schematic of the LeNet-like DNN used for some of the timing and accuracy benchmarks. Note that input layer
is a 32 × 32 × 1 grayscale synthetic image and that there is a tanh activation layer after each convolution. The output
prediction is passed through a softmax layer.

TABLE VI: Emulated instruction timing performance on
a 10-layer convolutional neural network (Figure 9) with
and without the emulated PPUlight (ePPU) support for the
cppPosit library.

w/ ePPU (ms) wo/ ePPU (ms) Speedup
posit〈8, 0〉 92 381 4.14

posit〈16, 0〉 105 416 3.96

The measurements reported are the mean value of multiple
executions. We did not report the standard deviation, being
it too small.

We choose image size of 32×32 since a frequent applica-
tion scenario is when the neural network is fed with regions
of interests coming from regional neural networks that
extract sub-images from bigger ones, focusing on particular
and smaller regions than the initial one.

As reported in Table VI, the image processing benefits
even from the emulated PPUlight. This is because the emu-
lation of posit instructions allows a more compact solution,
executing less simulated instructions.

4) PPUlight unit testing results: We developed a test-
bench using the same HDL language used for the PPUlight

unit to test the functionality of the newly introduced compo-
nents. In particular, we tried every combination for the inputs
and tested the outputs of conversion against our cppPosit
software library [19]. This means that we have also verified
the correct handling of all the corner cases, such as the
redundant negative zero and the redundant representations
for the Infinity and Not-A-Number in IEEE 32-bit floats.

5) Real hardware results: To assess the performance of
the customized core we ran the same benchmarks used in the
simulation phase on the ARIANE RISC-V core, equipped
with the OpenPiton 12 Linux distribution (based on the
ARIANE Linux 4.2). As before, timing performance were
measured using C++ internal software chrono directives.

Table VII shows the results of the same image processing
task on the synthesized Ariane RISC-V core, enabled with
the PPUlight support. As reported, the relative speedup
(computed as timenoppu/timeppu) shows how much we can
benefit from accelerated format compression and decompres-
sion using our PPUlight.

As described in previous sections, this approach involves
the conversion between posits and floats at each operation

TABLE VII: Real HW (FPGA) timing performance on a
10-layer convolutional neural network (Figure 9) with and
without the synthesized hardware PPUlight support for the
cppPosit library.

w/ PPU (s) wo/ PPU (s) Speedup
posit〈8, 0〉 5.4 58.87 10.90

posit〈16, 0〉 11.6 64.54 5.56

TABLE VIII: Trade-off between processing time of the
network in Figure 9. Processing time was obtained from the
real hardware implementation like in Table VII.

Time (s) DNN size (bytes) Compression
IEEE FP32 2,1 224894 -
posit〈16, 0〉 11.6 112874 1.99
posit〈8, 0〉 5.4 56864 3.95

(e.g. sum or multiplication). As a result, for each operation,
we are performing two more instructions for type conver-
sion. Table VIII summarizes the results obtained with the
evaluation of this trade-off. Note that the value obtained with
IEEE FP32 is totally independent from the presence of the
PPUlight.

We may think instead to take an entire posit network and
convert it beforehand to IEEE FP32, in order to exploit
compression as much as possible without slowing down
actual image processing.

This use case is relevant if we think about resource
constrained environments where volatile memory is scarce
(e.g. embedded or automotive systems) or when frequent
transfer of network models are done (e.g. smartphones with
recognition software). Moreover, these systems often use
an adaptive approach where, depending on the surrounding
environment (e.g. snow, night-time, off-road etc.), different
machine learning models need to be loaded. This means that
having multiple model on volatile storage can highly benefits
from compression even when they are not actually loaded
into main memory.

In this case, we need to decompress the network into IEEE
FP32 format only one time at the beginning of execution.
This will lead to a much slower start but a faster computation
time (that is the same as IEEE FP32 in Table VIII). Table
IX summarizes the results of this evaluation.

6) Discussion: From Tables IV and VII we can see how
we introduced our PPUlight component with a minimal
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TABLE IX: Trade-off between load&decompression time of
the network in Figure 9. Decompression time was obtained
from the real hardware implementation (Table VII).

Time (s) DNN size (bytes) Compression
IEEE FP32 - 224894 -
posit〈16, 0〉 51.5s 112874 1.99
posit〈8, 0〉 49.8s 56864 3.95

overhead in terms of power consumption (on the FPGA
component), utilisation of FPGA resources and no impact
on operating frequency. Moreover, the seamless integration
did not impact at all the performance of IEEE FP32 compu-
tations. We reported an overhead in posit compression and
decompression at computation time (theoretically adding two
instructions for each sum or multiplication operation). As
shown in Table VIII the trade-off between compression and
processing time can offer a compression up to a factor 4
with a slow down of 2.5 in terms of processing time.

This kind of trade-off leads us to propose a different ap-
proach: we decided to decompress the entire neural network
at the very beginning of the execution and then using only
IEEE FP32 numbers.
Doing so, we could get the processing time of pure FP32
approach (as in Table VIII) without the overhead of runtime
compression by spending around 50s at the beginning of the
execution for a single network decompression.

VIII. CONCLUSIONS

In this paper we described an extension for the RISC-
V ISA that implements the conversion between 8 or 16-bit
posits and 32-bit IEEE Floats or fixed point formats. Instead
of altering the already existent floating point units in the
ARIANE core we proposed a seamless integration of the
PPUlight unit in the core pipeline. We obtained a minimal
overhead in terms of power consumption, utilisation and
circuit latency. Therefore, performance of pure IEEE FP32
were not impacted. The use of the PPUlight leads to a com-
pression of data up to a factor 4 with a very little degradation
in computation accuracy when using posit〈8, 0〉 (as proven
in previous articles [15, 16]), but with an overhead in terms
of processing time. Finally we proposed a flexible approach
to using posit compression, being able to decompress the
entire neural network only at the beginning without suffering
from the runtime compression/decompression overhead. As
we reported, there is a clear overhead when employing
conversions during computations. Future works will assess
this aspect, bringing more arithmetical operations to the
PPU, combining the light approach to a more complete one.
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