The European Roadmap Towards HPC – From the Scientific (JSC) Perspective

SEP 22, 2021 I BERND MOHR
• Germany's largest national laboratory
• About 6400 employees
• Research areas
 • Information technology
 • Health (Neuroscience / brain research)
 • Energy
 • Atmosphere + Climate
JÜLICH SUPERCOMPUTING CENTRE (JSC)

HPC Centre for

- Forschungszentrum Jülich
- Jülich Aachen Research Alliance (JARA)
- Germany as GCS (1 of 3 German National Centres)
- Europe (1st European Centre inside PRACE)
JSC Contribution to the European HPC Present and Future

MODULAR SUPERCOMPUTING ARCHITECTURE (MSA)
MODULAR SUPERCOMPUTING

Composability of heterogeneous resources

- Cost-efficient scaling
- Effective resource-sharing

MODULAR SUPERCOMPUTING

Composability of heterogeneous resources

- Cost-efficient scaling
- Effective resource-sharing
- Fit application diversity
 - Large-scale simulations
 - Data analytics
 - Machine- and Deep Learning
 - Artificial Intelligence
MODULAR SUPERCOMPUTING TO EXASCALE

Pilot systems

Pre-Exascale @ Lux, @It

Petascale

EuroHPC Projects

FP7 - H2020 Projects
BACKGROUND

2011-2021: The DEEP projects

• DEEP (2011 – 2015)
 • Introduced Cluster-Booster architecture

• DEEP-ER (2013 – 2017)
 • Added I/O and resiliency functionalities

• DEEP-EST (2017 – 2021)
 • Modular Supercomputer Architecture
THE HARDWARE PROTOTYPES

2015

DEEP Prototype
128 Xeon + 284 KNC nodes
InfiniBand + 1.5Gbit Extoll
550 TFlop/s

2016

DEEP-ER Prototype
16 Xeon + 8 KNL nodes
100Gbit Extoll
40 TFlop/s

2020

DEEP-EST Prototype
55 CM + 75 ESB + 16 DAM
100 Gbit Extoll + InfiniBand + Eth
800 TFlop/s
PRODUCTION: MODULAR SUPERCOMPUTER JUWELS

JUWELS Cluster
#65
- Intel Xeon (Skylake) processor
- InfiniBand EDR network
- 2,500 compute nodes
- **10 PFLOP/s peak** (CPU-based)

JUWELS Booster
#8
- AMD EPYC Rome 7402 processor
- 3,700 NVIDIA A100 GPUs
- InfiniBand HDR DragonFly+
- **70 PFLOP/s peak** (GPU-based)

Funded through SiVeGCS (BMBF, MWK-NRW)
SEA PROJECTS (EUROHPC, 2021 – 2024)

- Provide solutions for Modular Supercomputers of Exascale performance

DEEP-SEA: DEEP Software for Exascale Architectures
- Better manage and program compute and memory heterogeneity
- Targets easier programming for Modular Supercomputers
- Continuation of the DEEP projects series

IO-SEA: Input/Output Software for Exascale Architectures
- Improve I/O and data management in large scale systems
- Leverages results from SAGE/SAGE2 and MAESTRO projects

RED-SEA: Network Solutions for Exascale Architectures
- Develops European network solutions
- Focus on BXI (Bull eXascale Interconnect)
EUROPEAN PILOT FOR EXASCALE

Towards EU Digital Sovereignty

- Designing, build, and validate the first HPC platform integrating
 - European processor technology (EPI)
 - European interconnect technology (BXI)
 - and a European software stack for HPC.

- EuroHPC RIA project
 - Starting beginning of 2022
 - 19 partners all over Europe

- JSC: MSA experience, performance tools and AI applications
THE EUROPEAN PILOT (TEP)

Europe’s RISC-V-based Accelerators

• Complementing ARM-based general purpose processors with specialized accelerators
• Built on Open and EU-local technologies; central: RISC-V ISA
• Two accelerators
 • VEC: high-performance vector accelerator
 • MLS: ML and stencil accelerator
• EuroHPC RIA project, starting end of 2021; 19 partners all over Europe
• JSC: numerical libraries
A MODULAR EXASCALE CONCEPT

Target: >20×
application performance compared to JUWELS Booster

Parallel Data System
> 1 EB

Universal Cluster
40 PF

Quantum Booster

GPU Boosters
> 1 EF

Network Attached Memory

Stencil Booster

Interactive Computation and Visualization

Neuromorphic Computing

JÜLICH Forschungszentrum

Mitglied der Helmholtz-Gemeinschaft

22. September 2021
MODULAR SUPERCOMPUTING WORLDWIDE

• **Japan**: Wisteria/BDEC-01

The system comprises *two partitions*: a *simulation node group*, called *Odyssey* [Fujitsu A64Fx], and a *data analysis node group*, called *Aquarius* [Nvidia A100 GPUs]

https://www.hpcwire.com/2021/02/25/japan-to-debut-integrated-fujitsu-hpc-ai-supercomputer-this-spring/

• **USA**: Lawrence Livermore National Lab

“We are pursuing *heterogeneous system architectures* that no longer consist of the same compute node deployed as many times as we can afford. [...] We are deploying *disaggregated systems* on the same high-speed interconnect […], whatever overall mix of devices will best serve the workload for which we are designing the system”

https://www.hpcwire.com/people-to-watch-2021/

Bronis R. de Supinski, CTO, LLNL Computing