DESIGN, AUTOMATION & TEST IN EUROPE

01 – 05 February 2021 · virtual conference

The European Event for Electronic System Design & Test

NoC Performance Model for Efficient Network Latency Estimation

Oumaima Matoussi

Université Paris-Saclay, CEA List, France

Introduction

- NoCs are prevalent in many-core architectures
 - NoCs contribute to system performance and cost
 - Efficient and reliable NoC models are needed

Tilera Tile64 with 2D mesh [2]

- Fast and reliable NoC model for early performance estimation
 - Parametric ____ Design Space Exploration (DSE)

 - Scalable
 Large scale MPSoC simulation
 - Realistic
 Resource contention modeling

Outline

Introduction

- NoC Background
- Proposed NoC Model
- NoC Model Evaluation
- Conclusion

3rd February 2021

NoC Fundamentals

• A NoC is mainly characterized by:

- Topology
- Routing algorithm
- Flow control

A mesh topology [3]

NoC performance is measured by packet latency

 $Lat_{pkt} = Plat_{pkt} \times nbr hops + FT \times (L - 1) + W_{pkt}$

NoC Modeling Approaches

Analytical approaches	Simulation approaches
Netwok Calculus [4] Queuing Theory [5] Real-time Analysis (WCTT) [6]	Garnet [7] BookSim [8] Noxim [9]
 (+) Fast design space exploration (-) Not suitable for non deterministic traffic 	 (+) Flit-level granularity (-) Not suitable for large scale simulations

Combine the advantages of analytical and simulation approaches in a hybrid NoC Model

3rd February 2021

Outline

- Introduction
- NoC Background
- Proposed NoC Model
- NoC Model Evaluation
- Conclusion

Router Model and Packet Tracing

- Information about pkt_k is collected in contention interval Ci_i
 - Route computation
 - Buffer update
- Network latency of pkt_k is computed in Cl_{i+1}

Interval_start=pkt_k.timestamp Interval_end=interval_start + CI

CI bounds

Network Latency Estimation (1/2)

3rd February 2021

Network Latency Estimation (2/2)

- Congestion delay
 - is caused by:
 - Blocked HOL packet
 - Full destination Buffer

HOL blocking

Outline

- Introduction
- NoC Background
- Proposed NoC Model
- NoC Model Evaluation
- Conclusion

Standalone Mode (1/2)

Impact of mesh size on average network latency under

uniform-random traffic

Standalone Mode (2/2)

Impact of VC variation on average network latency of

4*4 mesh

Full System Simulation Mode

Integration of NoC model in VPSim [10]

NoC model in an FSS environment

	swaptions	radiosity	barnes
slowdown	1,6	2,5	1,5

Slowdown of VPSim in MIPS

Conclusion

- A hybrid NoC model:
 - Abstract router model
 - Analytical formulae for latency computation _
 - link contention
 - buffer congestion

Suitable for Full System Simulation

14[⊗] Speedup <= 17% error

- 1. B. D. de Dinechin and A. Graillat, "Network-on-chip service guarantees on the kalray mppa-256 bostan processor", AISTECS .
- 2. Tile-gx36 processor, Available: <u>https://www.mellanox.com/related-docs/prod multi core/PB TILEGx36.pdf</u>, [Online].
- 3. S.Pasricha, N.Dutt, "On-Chip Communication Architectures System On Chip Interconnect".
- 4. F. Giroudot and A. Mifdaoui, "Tightness and computation assessment of worst-case delay bounds in wormhole networks-on-chip", RNS.
- 5. N. Nikitin and J. Cortadella, "A performance analytical model for network-on-chip with constant service time routers", ICCAD.
- 6. L. Abdallah, M. Jan, "Wormhole networks properties and their use for optimizing worst case delay analysis of many-cores", SIES.
- 7. N. Agarwal, T. Krishna, "Garnet: A detailed on-chip network model inside a full-system simulator".
- 8. Nan Jiang, D. U. Becker, "A detailed and flexible cycleaccurate network-on-chip simulator", ISPASS.
- 9. V. Catania, A. Mineo, "Noxim: An open, extensible and cycle-accurate network on chip simulator", ASAP.
- 10. A. Charif, G.Busnot, R. Mameesh, T. Sassolas, "Fast virtual prototyping for embedded computing systems design and exploration", RAPIDO.

3rd February 2021

This work is partially funded by **H2020 European Processor Initiative** (grant agreement No 826647).