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INTRODUCTION TO VP AND EPI NEEDS
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BENEFITS OF ARCHITECTURE VIRTUAL PROTOTYPING

 Virtual prototyping can help designing complex SoCs and Electronic Systems

 Allow fast design exploration and improve design quality and performance while encompassing power, reliability …

 Bring a virtual HW platform to SW designers to start development in complex environments (e.g. external sensor data) 

prior to silicon 

 Provide unlimited SdK seats, and Continuous Integration capabilities throughout product cycle

 VPs parallelize design phases and increase design productivity 
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OUTLINE
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 VPSim for European Processor Initiative

 VPSim background overview

 Recent EPI evolutions VPSim 0.3.0

 Cache

 Noc 

 Numerical results

 Co-simulation for verification of safety critical applications

 Conclusion & perspectives 

 References 

 Video demonstration
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SESAM/VPSIM

 A virtual prototyping framework

 Early software development

 Performance profiling and debug

 Design space exploration

 Hardware validation

 CPS prototyping

 Easy interfacing thx to SystemC/TLM 2.0 and FMI

 Fast platform description with Python

 With large and flexible IP portfolio

 Rapid simulation able to run full software stacks

 From hypervisor, to full-fledged applications with standard debugging features 

From SoC to CPS design

Copyright © European Processor Initiative, HIPEAC2021 EPI Tutorial, Budapest January 2021



VPSim FOR EUROPEAN PROCESSOR INITIATIVE
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POSITIONING OF SIMULATION ACTIVITIES
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EPI VIRTUAL PLATFORM USING SESAM/VPSIM

 Virtual Environment

 Software development

 Hardware/Software Co-Design

 Help software teams get started

 Early testing and preparation of 
software environment and test suites

 Support all levels from BIOS to OpenMPI

 EPI processor specifications

 Early identification of performance issues

8
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EPI VIRTUAL PLATFORM USING SESAM/VPSIM

Challenges

 Highly complex heterogeneous platform

 Manycore processor (GPP), accelerators
(RISC-V, Kalray), Microcontrollers (Infineon)

 Require latest processor features to enable
software development

 ARM SVE (Scalable Vector Extensions)

 ARM PMU (Performance Monitoring Units)

 Need for speed 
(Full server OS and compilation environment)

 Need for accuracy
(focus on memory subsystem with NoC to identify
bottlenecks)

9
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GPP (GENERAL PURPOSE PROCESSOR) VIRTUAL PLATFORM

 Software development and co-design supporting complex

software environments with improved timing model

 Debian Linux with network connectivity and build environment

 Coherent cache and NoC models

 Custom execution counters for application profiling

 Stats accessible online from PMU registers

 Imported latest upstream advances in QEMU

 Performance improvement for large pages

 PMU interrupts

 Collaboration with partners for integration of specific/needed features

 OpenMPI for BSC, PMU for Fraunhofer & BSC, NVMe for FORTH, FMI for UNIPI, etc.
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VPSim BACKGROUND OVERVIEW
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VPSIM TOOL OVERVIEW

 SystemC/TLM-based virtual prototyping platform

 Internal models

 CPU models provided by QEMU

 Peripheral and memrory hierarhcy components

developed from scratch

 External models

 Third-party subsystems using many standard and non-standard 

interfaces

 Release v0.3.0

 Configurable cache hierarchy with coherence

 NoC model with contention
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FAST PLATFORM SETUP
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Co-simulation 

FMI System

HW HIL

ARM, RISC-V …
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VirtioNet, …
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(Python, GUI…)
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2.0 system (.so)
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Subsystems
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statistics
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HIGH-LEVEL PLATFORM DESCRIPTION EXAMPLE

from vpsim import *

class ExampleSystem(System):

def __init__(self):

System.__init__(self, 'MyExample')

self.sysbus = Bus(latency=10*ns)

ram = Memory(base=0x10000000, size=1*GB)

self.sysbus >> ram

self.sysbus >> GICv2(base=0xff000000, # other attrs #) 

self.sysbus >> CadenceUART(base=0xfe000000,irq=0x70)

for i in range(4):

cpu = Arm64(id=i,model='cortex-a57')

cpu >> self.sysbus

BlobLoader(offset=ram.base,

file='example.dtb')

BlobLoader(offset=ram.base+0x80000,

file='Image')

sys = ExampleSystem()

sys.addParam(param="quantum", value=1000*ns)

stats = sys.simulate()

XSD: List of components and attributes

XML: Instances and connections

XML: Per-component statistics

VPSim



LARGE AND FLEXIBLE IP PORTFOLIO

 Built-in SystemC/TLM components

 Memories : SRAM, DDR3 controller, Caches

 Interconnects

 Peripherals : UARTs, SPI, I2C, RTC, Timer…

 Interrupt controllers

 High-speed interfaces :PCI-Express host bridge, switches…

 Native support for QEMU as a model provider

 CPUs 

 Everything in QEMU can be used in a SystemC environment

 Network, block devices, GPUs, ARM GIC...

 Always up-to-date with the latest versions

 3rd party SystemC subsystems

 Any SystemC/TLM subsystem can be imported 

 ARM Fast Models, Open Virtual Platforms, QBox…

Arm (926, 1176, 11mpcore…)

Cortex (m3, m4, r5, r5f, a7, a8, 

a9, a15, a53, a57)

ARM v8.2 with SVE

PXA (250 to 270-c5)

MIPS I, II, III, IV, V

MIPS32/64 (release 1-6)

403, 405, 440, 6xx, 7xx, 970

MPC (5xx, 8xx, 82xx, 83xx, 85xx

POWER (5, 5+, 7, 7+, 8, 9)

PowerPC (4xx, 6xx, 7xx, 74xx, 970)

P series (e500)

Sparc64, MicroSparc, 

SuperSparc, UltraSparc

LEON (2, 3)

tc179x et tc27x Xtensa dc23x

V1.9.1

TILE-GX
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QEMU INTEGRATION

 Use everything in QEMU, not just CPUs

 Peripheral models

 Virtualization with host systems (e.g. Ethernet )

 High-level instantiation of QEMU models

 No need to know QEMU’s internals

 Inline checking of memory access accuracy

 No impact if DMI allowed (host ld/st instruction)

 RAM accesses handled in SystemC otherwise

uart = ModelProviderDev(provider=‘qemu’, model=‘pl011’, 

base=0xfe000000, irq=50)

# Connection to SystemC bus

sysbus >> uart

# QEMU’s command line configuration

ModelProviderOpt(option=‘-gdb’, value=‘tcp::2222’)
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DYNAMIC ACCURACY CONTROL

 Models are usually either rapid or accurate

 Fast models lack precision leading to unrealistic DSE

 Accurate models lack speed to execute full software 

stacks

 With dynamic accuracy management :

 Use accurate modelling only for SW/HW that requires it

 Use abstract and fast simulation otherwise 

 Example : 
 Fast linux boot + detailed parallel application benchmarking

 Adaptive TLM access modelling

 Specify components that need to be simulated (HW RoI)

 Specify SW portions where hardware RoI is valid (SW 

RoI)

 Dynamically change the accuracy through the Monitor 

interface which will invalidate DMI pointers

C
P

U

i$

d$

b
u

s

L2 b
u

s

SRAM

DRAM

ROM

As fast as possible

C
P

U

i$

d$

b
u

s

L2 b
u

s

SRAM

DRAM

ROM

Simulate I-CACHE

DMI_OK=f
alse

invalidate

C
P

U

i$

d$

b
u

s

L2 b
u

s

SRAM

DRAM

ROM

Simulate L2 cache

DMI_OK=f
alse

invalidate

C
P

U

i$

d$

b
u

s

L2 b
u

s

SRAM

DRAM

ROM

Simulate DRAM

DMI_OK=f
alse

invalidate

Not simulated

Get the best performance /accuracy tradeoff 
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INTERFACING WITH VARIOUS SIMULATION ENVIRONMENTS

…

ECU ECU

ISS ISS

ECU

ISS

Multi-physics 

simulation tool

HW emulation

Physical 

actuator/sensorPower & 

temperature
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 RTL co-simulation 

 Fast IP test environment setup

 Significantly accelerates test cycles through 

adapted modelling level

 RTL for Design Under Test (DUT)

 VP for the rest

 Pervasive FMI 2.0 Co-simulation

 Holistic system view encompassing any external 

simulator with FMI co-simulation

 Allows integrating SESAM tools throughout 

design cycles in a model-driven environment

 Allows cross domain analysis

 Co-simulation with FMI and RTL simulation environments



EXTERNAL SIMULATOR INTEGRATION

 Additional interface to co-simulate with peripherals implemented in external simulators : 

19

#Python instantiation example

extsim = ExternalSimulator(

base_address = 0x80000000,

size =0x40000000,

lib_path = '/vpsim/ExternalSimulator.so',

irq_n = 7,

interrupt_parent = 'RiscV0‘ )

hh

#connection to system bus

sysbus >> extsim

sysbus.n_out_ports+=1

 C API to wrap the external simulator :

 Main execution thread launch : 

 void run_simulator(void)

 Memory mapped data access 

 uint32_t write_simulator (uint64_t addr, unsigned size, uint64_t p_data)

 uint32_t read_simulator (uint64_t addr, unsigned size, uint64_t p_data)

 Provision of implemented callback functions in VPSim

 IRQ managment :

 void register_irq_callback (InterruptCb cb)

 void update_irq (uint32_t line, uint32_t value)

 Time managment

 void register_sync_callback (SynchroCb cb)

 void sync_cb (uint64_t executed, bool wait_for_event)
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CACHE HIERARCHY
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CACHE HIERARCHY

 New coherence protocol

 Design choices

 Directory-based

 MSI (Modified, Shared, Invalid)

 Specification based on [1] with:

 Extension to 3-level cache hierarchies

 Extension to exclusive caches

 Validation by means of assertions (around 160)

 Worst-case time model (over-approximated values expected)

[1] Nagarajan, V., Sorin, D. J., Hill, M. D., & Wood, D. A. (2020). A Primer on Memory Consistency and Cache Coherence. Synthesis Lectures on Computer 

Architecture, 15(1), 1-294.
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CACHE HIERARCHY – USER’S VIEW : INPUT 

Input configuration file

'memory_subsystem': {

'simulate': True,

'enable_coherence': True, # Can be deactivated

'cache': { … },

…

},

'cpu': {

'cores': 16,

'cores_per_cluster': 4, # Number of cores in each cluster

'cpu_clusters': [ # (CPUs in clusters, positions in NoC)

([  0,   1,   2,   3], (0,0)), # cluster 1

([  4,   5,   6,   7], (0,1)), # cluster 2

([  8,   9, 10, 11], (1,0)), # cluster 3

([12, 13, 14, 15], (1,1))  # cluster 4

],

…

},
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CACHE HIERARCHY – USER’S VIEW : OUTPUT 

Performance 

counter

Description

Coherence-related counters

GetS (Down Stream) Get line in read-only mode

GetM (Down Stream) Get line in read-modify mode

FwdGetS (Up Stream) Get line ownership and put in read-only mode

FwdGetM (Up Stream) Get line ownership and invalidate

PutS (Down Stream) Line replacement in read-only mode

PutM (Down Stream) Line replacement in read-modify mode

PutI (Up Stream) Invalidate line

General-purpose counters

Hits (GetS and LineState in {Shared, Modified}) Or (GetM and LineState=Modified)

Misses

Writebacks

Cache performance counters
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NoC MODELLING

24
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VPSIM NoC MODELS : LATENCY COMPUTATION

 A parametric NoC performance model (DATE 2021) :

 Features an abstract router model (represented by a set of output buffers)

 Can account for network contention at a router basis : Queuing delay & Congestion delay

 Elementary NoC model

 Zero-load latency (assuming no contention)  lower bound on average network latency

 Hop latency + serialization latency 

Zlat(pkt) = Ppkt × nbr hops + F T × (L − 1)   

 NoC with contention modeling

 Buffer waiting time due to resource contention  realistic estimation of average network latency 

 Zero-load latency + queuing latency

Lat(pkt) = Ppkt × nbr hops + F T × (L − 1) + Wpkt

25

Notation used as in Dally, 

William & Towles, Brian. (2004). 

Principles and Practices of 

Interconnection Network

• Ppkt: physical delay (router 

+ link transfer)

• FT: flit transmission time

• L: packet size (in flits) 

• Wpkt: queuing delay
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NOC MODEL – USER’S VIEW : INPUT
# 2D mesh with XY routing

'noc': {   

'x-nodes': 2,  'y-nodes': 2, # mesh size

'diagnosis' : False,

'with-contention‘ : True,  # enable/disable contention model

'contention-interval-ns‘ : 10, # contention is evaluated during this predefined period of time

'buffer-size-flits‘ : 1, # buffer size in flits

'router-latency-ns‘ : 1, # physical switch latency (in nanoseconds)

'link-latency-ns‘ : 1, # physical link latency (in nanoseconds)

'virtual-channels‘ : 1, # number of virtual channels per physical channel

},

Input configuration file

# Components’ coordinates on the mesh

memory_subsystem': {

‘l3':  {

'home-nodes': [ # base address, address space, noc position

(0x40000000, 0x40000000, (0,0)), 

(0x80000000, 0x40000000, (0,1)),

(0xC0000000,  0x40000000, (1,0)), 

(0x100000000, 0x40000000, (1,1))

],

…

}
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NOC MODEL – USER’S VIEW : OUTPUT

Performance counter Description

Packets Number of packets transmitted by the NoC

Total distance Total distance crossed (in hops)

Average Network Latency Zero-load delay + contention delay (in ns)

NoC performance counters
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SIMULATION SPEED OF THE NoC MODEL

Up to x14 Speedup of the NoC model w.r.t. Garnet
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VPSim MIPS slowdown induced by the NoC model

Benchmark Slowdown

Swaptions 1,6

radiosity 2,5

barnes 1,5

fmm 2,3

Black-scholes 2

Water-spatial 1,5



NOC CONFIGURABILITY

 NoC parameters : NoC mesh size, buffer size, router latency (hop & serialization), VCs per Port

Average network latency w.r.t. mesh size Average network latency w.r.t buffer size
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COMPARISON WITH GARNET : NoC SIZE
(STANDALONE MODE)

 Experiment : Random uniform traffic  | 2 VC per port  | 1-stage router (1 cy) + link transfer (1 cy)

Average network latency: 4*4 mesh with XY routing Average network latency: 8*8 mesh with XY routing
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COMPARISON WITH GARNET : VIRTUAL CHANNEL
(STANDALONE MODE)

 Experiment : Random uniform traffic  | 4x4 mesh XY routing | 1-stage router (1 cy) + link transfer (1 cy)

Average network latency : 1 VC per port Average network latency : 4 VC per port
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Average network latency : 3VC per port
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VPSim SPEED / ACCURACY TRADE-OFF

32
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VPSIM SIMULATION SPEED

 EPI leverages several simulators to best fit all design needs from architecture 

exploration to SW dev

 Consistent results between simulators (MUSA, GEM5, VPSim) is paramount

to make reliable design decisions 

 A  thorough co-validation of simulators was conducted

 Evaluation of VPSim speed and accuracy w.r.t complementary EPI simulators

 Evaluation of achieved simulation speed in instructions per seconds

 Total guest instructions / total simulation duration

 Used benchmarks

 FMA-bench

 simple STREAM kernel

 Various test size

 Used model : 

 Single ARM core architecture

 3 cache levels

 VPSim achieves significant acceleration over more accurate simulators to provide faster DSE and SW development environment 

34
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HARDWARE PERFORMANCE COUNTERS

35

Cache counter Description

overall access Total number of overall (read+write) accesses on cache. The counter accumulates demand requests (hits + misses) and non-demand requests, but should not

include.

overall miss Total number of overall (read+write) misses on cache. The counter accumulation is similar to that of overall access.

For non-blocking caches, an access misses on a cache block and if it then leads to a hit on the MSHR queue, it should be counted as a cache miss.

overall hit Total number of overall (read+write) hits on cache. The counter accumulation is simulated to that of overall miss.

Overall miss rate A ratio of overall miss over overall access

Instruction  counter Description

Simulated instruction Total number of instructions are simulated.

Committed instruction Total number of instructions are committed.

Executed instructions Total number of instructions that are executed.

Operation  counter Description

Simulated Operation Total number of operations (including micro operations) are committed.

Committed operation Total number of operations (including micro operations) are committed.

Committed integer Total number of integer operations are committed.

Committed float Total number of floating-point operations are committed.

Committed SIMD Total number of SIMD operations are committed. The SIMD counter should exclude Predicate operations.

Committed mem read Total committed memory read operations (including micro operations). Note that a SIMD load instruction can be split into multiple micro operations

Committed mem write Total committed memory write operations (including micro mem write operations). The counter accumulation is similar to that of committed mem read.

Simulated time 

counter

Description

Simulated second Number of seconds is simulated.
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EXAMPLE RESULTS

 Consistent results with more detailed architecture simulators

36

0,00E+00

5,00E+07

1,00E+08

1,50E+08

2,00E+08

2,50E+08

3,00E+08

3,50E+08

4,00E+08

Committed Instr Committed SIMD

Instruction counters with FMA Benchmark

MUSA VPSIm Gem5

0,00E+00

2,00E+06

4,00E+06

6,00E+06

8,00E+06

1,00E+07

1,20E+07

Committed mem Write + Read

Memory access counters with FMA Benchmark

MUSA VPSIm Gem5
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FMI CO-SIMULATION FOR SAFETY CRITICAL

APPLICATIONS

37
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 Automatic Transmission Controller (ATC)

CO-SIMULATION FOR VERIFICATION OF SAFETY 

CRITICAL APPLICATIONS IN EMBEDDED PROCESSORS

38

Joint work with Universita de Pisa published in CoSim-CPS 2020 : Cross-level co-simulation and verification of an automatic transmission 

control on embedded processor, C. Bernardeschi, A. Domenici, M. Palmieri, S. Saponara, T. Sassolas, A. Wicaksana & L. Zaourar

 FMU generated by VPSim to emulate a single 

cluster of ARMv8 64-bit architectures

 1-core processors with private L1 and L2 caches 

connected to the on-chip interconnect and 

peripheral devices

 The architecture executes a Linux OS which 

supports the ShiftLogic application

 Performance-related properties can be assessed, 

possibly evaluating alternative choices of hardware 

components

ATC : control 

application

Linux

Hardware VP

VPSim control FMU

Into-CPS

Cosimulation Orchestration Engine (COE)

Automotive FMU

Transmission

Engine

speed throttle gear speed throttle gear

vehicule
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IMPACT OF SIMULATED CPU SPEED ON BEHAVIOR

 If the ATC execution duration is longer than

the FMI cosimulation step, output values 

are updated in later simulation steps

 (tested with added delay loops in the 

application code)

39

 If the ATC execution duration is shorter than

the FMI cosimulation step, output values 

are updated at every steps

 Consistent result with more abstract 

modeling of application execution
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CO-SIMULATION RESULTS

 Resulting execution profile

40

 Difference with abstract control code modeling (when 

facing too long execution duration of the control code)
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CONCLUSION 

41

 Virtual prototypes 

 Abstract simulation models that enable SW development in the absence/limited access to the HW
 Reduce the lag between HW delivery and SW availability 
 Improve time-to-market

 VPSim provides good compromise between accuracy and execution time 

 Achieves high simulation speed to enable the simulation of large scale HPC processors from design 
space exploration to SW developments

 Though abstracting most of the modelled HW, simulation accuracy is kept high with error limited to 3,6% 
on performance counters

 Several interfaces to enable efficient co-simulation at several levels of abstraction ranging from system 
simulation with the FMI standard, to external TLM peripherals and RTL simulation

 By leveraging QEMU library as well as in-house models VPSim provides a rich model library to build a 
new platform in a glimpse through its user friendly python interface
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42

 Further improve the timing accuracy of VPSim

 Account for out-of-order execution, branch predictors and prefetchers

 Automate timing modelling from more detailed models using learning techniques

 Key to enable architectural decisions through efficient automated Design Space Exploration

 Leverage VPSim co-simulation capabilities to couple with other partner’s simulation tools and 

provide a system simulation (e.g. Synopsys Virtualizer)

 Define novel parallel methods to accelerate the simulation of memory hierarchies for ever-larger 

HPC models

 Keep enriching the model library (e.g. GPUs, eFPGAs)
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