

THE EUROPEAN APPROACH FOR EXASCALE AGES

HOW DOES THE FUTURE PROCESSORS LOOK LIKE?

Jean-marc.denis@European-processor-initiative.eu

Chairman of the Board

THIS PROJECT HAS RECEIVED FUNDING FROM THE EUROPEAN UNION'S HORIZON 2020 RESEARCH AND INNOVATION PROGRAM UNDER GRANT AGREEMENT NO 826647

CONTEXT

European Commission President Jean-Claude Juncker

Paris, 27 October 2015

« Our ambition is for Europe to become one of the top 3 world leaders in high-performance computing by 2020 »

Creation of the European processor Initiative

23 members from 10 EU countries

- → General Purpose processor in 2022
- Accelerator IP

Brussels, 1 Dec 2017

Vice President Andrus Ansip

« I encourage even more EU countries to engage in this ambitious endeavour »

Digital Day Rome, 23 March 2017

Ministers from seven MS (France, Germany, Italy, Luxembourg, Netherlands, Portugal and Spain) sign a declaration to support the next generation of computing and data infrastructures

Ursula Von Der Lyen State of the Union

Brussels – September, 16th, 2020

- Investment of 8 billion euros in the next generation of supercomputers - cuttingedge technology made in Europe.
- The European industry will develop our own next-generation microprocessor

EPI OBJECTIVES

- Overall: Develop a complete EU designed high-end microprocessor, addressing Supercomputing and edge-HPC segments
- Short-term objective
 - supply the EU-designed microprocessor to empower the EU Exascale machines
- Long-term objective
 - Europe needs a sovereign (=not at risk of limitation or embargo by non-EU countries) access to high-performance, low-power microprocessors, from IP to products
- EPI has been set to fulfil this objective
- EPI has to cover all Technical Readiness levels (TRL)
 - TRL 1-3 are for long-term objectives (EU IP)

and

TRL 4-9 are for short to mid-term objectives (decade) with products designed in EU

27 PARTNERS FROM 10 EU COUNTRIES

UNIVERSITÀ DI BOLOGNA

Faculty of Electrical

Engineering and

Computing

FROM IPR TO PRODUCTS FROM EPI TO SIPEARL

- SIPEARL is
 - Incorporated in EU (France)
 - the industrial and business 'hand' of EPI
 - the Fabless company
- licence of IPs from the partners
- develop own IPs around it
- licence the missing components from the market
- Raise in equity the missing budget (~100M€)
- generate revenue from both the HPC, IA, server and eHPC markets
- integrate, market, support & sell the chip
- work on the next generations

FROM OBJECTIVES TO ROADMAP, FROM ROADMAP TO PRODUCTS

(POST)-EXASCALE SUPERCOMPUTERS OVERALL SPECIFICATIONS

HPC BEFORE ARTIFICIAL INTELLIGENCE

HPC WITH ARTIFICIAL INTELLIGENCE

European Processor Initiative

HPC & AI AT EXASCALE: IT'S ALL ABOUT WORKFLOWS (1/3)

SUMMIT

sunway taihulight

HPC & AI AT EXASCALE: IT'S ALL ABOUT WORKFLOWS (2/3)

European Processor Initiative

HPC & AI AT EXASCALE: IT'S ALL ABOUT WORKFLOWS (3/3)

TAKEWAY #1

- The HPC Datacenter will
 "disappear": users need a continuum
 between sensors (IoT) and data
 analysis (supercomputers) through
 edge layer.
- Hybrid computing (in-house & Cloud) is a must
- Workflows from IoT to Supercomputers need seamless dataflows
 - → develop once, run on many

TAKEWAY #2

Exascale and post-Exascale superpercomputers will modular.

They'll have massively nonhomogenous architectures, combining one general purpose processor with several different accelerator kinds

TAKEWAY #3

Software will play an even more important role as a unification layer between all technologies, between all modules

- Opensource and standardization are more important than ever
- Proprietary SW stacks, especially for specialized HW will become problematic

SPECIFICATIONS FOR AN EXASCALE CLASS GENERAL PURPOSE PROCESSOR

FROM TAKE AWAYS #1 TO #3

General Purpose Processors have to be (much) more open

The race to FLOPS is now in the accelerators area

TAKEWAY #4 SPECIFICATION FOR EXASCALE GENERAL PURPOSE PROCESSORS (PART 1)

- Need extreme flexibility and performances on external links
 - HBM 2e / 3
 - *and* DDR 5
 - *and* PCIe G5
 - *and* CXL
- Transparent integration in end-to-end dataflow:
 IoT ←→ Edge ←→ Datacenter ←→ Cloud
 - Easy to port / optimize
 - Opensource tools
 - Unified development tools

EXASCALE CLASS GENERAL PURPOSE PROCESSORS UNDER THE HOOD

24

TAKEWAY #5 SPECIFICATION FOR EXASCALE GENERAL PURPOSE PROCESSORS (PART 2)

- No need to compete with specialized devices like GPUs
 - → Need "good enough" but excellent FP64 performances
- Improve overall efficiency
 - → Need much better byte/Flop ratio than today

SO... WHAT ARE THE OVERALL SPECIFICATIONS FOR THE EUROPEAN PROCESSOR INITIATIVE?

- ARM Instruction set (IoT to HPC)
- Strong memory subsystem with HBM and DDR
- Extra large PCIe subsystem (maximize PCIe lanes)
- HPC standard interface (CXL)
- Maximum interoperability with accelerators
- Focus on ease of use
 - +++ byte per flop
 - +++ open source SW tools

- Multi-Die

Copyright © European Processor Initiative 2020.

PERSPECTIVES AND CHALLENGES

EPI DELIVERS!

- The expertise for developing high-end and complex processing units in Europe, after decades of dis-investment
- A General Purpose Processor for HPC machines can be developed in EU by a EU Company (SiPearl)
- We'll be ready to move to the next step: engage on the development of a 100% EU IP general purpose processor.

Copyright © European Processor Initiative 2020.

CHALLENGES?

Copyright © European Processor Initiative 2020.

47

CHALLENGES?

Copyright © European Processor Initiative 2020.

48

THANK YOU FOR YOUR ATTENTION

- www.european-processor-initiative.eu
- @EuProcessor
- in European Processor Initiative
- European Processor Initiative