A Novel Posit-based Fast Approximation of ELU Activation Function for Deep Neural Networks

Marco Cococcioni, Federico Rossi, Emanuele Ruffaldi, Sergio Saponara

Introduction

- Cost efficiency of Deep Neural Networks (DNNs) is critical
- Industry and academia push towards reduction of arithmetic complexity [1, 2]
 - Posit number system [3] is a new promising compressed floating point format
- Typical bottlenecks in DNNs are: a) massive use of small-filter convolutions and matrix-vector multiplications b) computation of activation function over big amount of data
- ▶ a) can be addressed with vector or graphics processing units.
- b) involves non-linear operators and knowledge of underlying data distribution

Posit number system

- The posit format is represented by a 2's complement integer and is configurable in the total number of bits and exponent bits
 posit(*nbits*, *esbits*)
- Maximum of 4 fields
- sign (1-bit)
- regime (run-length encoded value)
- exponent (variable length with *esbits* maximum)
- mantissa (variable length)
- Given a posit represented by the integer *l*, the correspondent real value is: sign(l) × useed^k · 2^e · (1 + f)
 - Where $useed = 2^{esbits}$, k is the value extracted from the regime and f is the value of the mantissa

cppPosit Library

- Developed in Pisa by MMI spa and University of Pisa
- Modern C++ with templatization and traits for posit configuration
- Operations are classified into four different levels: L1 to L4
- L1 operations are the most efficient ones, involving only manipulation of the representing integer
- Posit emulation is supported by different backends (e.g. float backend, ALU backend or fixed backend)

Extended Linear Unit (ELU) function

- S-shaped functions like hyperbolic tangent or sigmoid suffer from vanishing gradients
 - ELU-like functions solve this problem

$$ELU(x) = e^x - 1$$
, if $x \le 0$, x otherwhise (1)

ELU function can be expressed as a function of the sigmoid one:
 2 · [1/(2 · Sigmoid(-x)) - 1]

Fast approximation: fastELU

If we substitute the Sigmoid function in the previous equation with its posit approximated version we obtain a L1 version of the ELU function

Benchmark and experimental environment

- The benchmark used for experimental analysis is an image classification task on the GTRSB (German Traffic Road Sign Benchmark) dataset.
- The LeNet-5 deep neural network model has been used during the experimental phase.
- Benchmarks are executed on a 7-th generation Intel i7-7560U processor, running Ubuntu Linux 18.04, equipped with GCC 8.3.

Discussion

As reported therein, Float32 accuracy is easily matched by Posits with 16 down to 10 bits, and, in particular, for GTRSB similar performance are obtained even with a Posit8,0. According to these results the adoption of Posit and ELU can lead to nearly the same processing accuracy of Float32 but with a remarkable reduction, up to a factor of 4, of the data storage.

R	es	ul	ts
---	----	----	----

Activation	FastELU (this paper)		ELU		ReLU	
	%	ms	%	ms	%	ms
SoftFloat32	-	-	94.2	15.86	92.7	8.2
Posit16,0	94.0	5.8	94.2	6.37	92.7	5.0
Posit14,0	94.0	4.6	94.2	5.21	92.7	4.3
Posit12,0	94.0	4.6	94.2	5.08	92.7	4.3
Posit10,0	94.0	4.6	94.2	5.0	92.7	4.2
Posit8,0	92.0	4.6	91.8	5.0	86.8	4.0

 Table: Benchmark results on the GTRSB dataset.

Conclusions

In this work we have introduced a fast way to approximate the well-known ELU activation function in DNNs, when using the novel Posit format for representing the reals, instead of classic IEEE-754 Floats.

ACKNOWLEDGEMENTS

Work funded by the H2020 European Processor Initiative project

Bibliography

- U. Köster et al. Flexpoint: An adaptive numerical format for efficient training of deep neural networks. In Advances in Neural Inf. Processing Systems, pages 1742– 1752, 2017.
- [2] A. Malossi et al. The transprecision computing paradigm: Concept, design, and applications. In *2018 Design, Automation Test in Europe Conference Exhibition (DATE)*, pages 1105–1110, 2018. doi: 10.23919/DATE.2018.8342176.
- [3] John L Gustafson and Isaac T Yonemoto. Beating floating point at its own game: Posit arithmetic. *Supercomputing Frontiers and Innovations*, 4(2):71–86, 2017.

Federico Rossi

federico.rossi@ing.unipi.it

University of Pisa