CO-DESIGN IN EPI

13 MAY 2020

DIRK PLEITER (JÜLICH SUPERCOMPUTING CENTRE)

EPI MISSION

- European independence in High Performance Computing Processor Technologies
- EU Exascale machine based on EU processor by 2023
- Based on solid, long-term economic model, Go beyond HPC market
- Address the needs of European industry
 - Example: car manufacturing market

COMMON PLATFORM APPROACH

- Integration of different technological components
 - E.g. Tiles with Arm cores,RISC-V accelerators,MPPA, eFPGA, ...
- Global approach for power management and security
- Modular approach allows (in principle) flexible customization

GPP STREAM

- Based on established processor core technology
 - First generation based on Arm's Zeus core
- Zeus is part of Arm's Neoverse processor family
 - High-performance processors for AI, Cloud, HPC and edge
 - Aim for processor designs with large number of cores
 - Armv8-A ISA

ACCELERATOR STREAM

- Vector processing unit
 - Based on RISC-V vector ISA
- Domain specific accelerators
 - Stencil/tensor accelerator (STX)
 - Variable precision processor

PROCESSOR-LEVEL CO-DESIGN IN EPI

- Bi-directional and iterative interaction process between:
 - application experts and
 - hardware (HW) and systemsoftware (SW) developers
- Goal:
 - Identify application's requirements
 - Feed these into design of EPI's HW+SW technologies

CO-DESIGN SCOPE IN EPI

- Focus on giving quality feedback to HW/SW designers
 - Not enough effort for full application porting
 - Co-design between Applications and HW/SW
 - Co-design between HW and SW happens in other WPs
- Multi-level suite of benchmarks
 - From very low-synthetic benchmarks to high-level applications
- Methodology with multi-level models & simulators
 - Analytical models, high level
 - Simulation based (e.g. gem5 simulation engine)
 - Reference platform (e.g. Marvell ThunderX2, HiSilicon Hi1616)

FIELDS PRESENT IN CURRENT APPLICATION SELECTION

- Biophysics
- Biology/Medicine
- Earth Sciences/Climate
- HEP & Fusion
- Material Sciences
- CFD
- Hydrodynamics
- PDE
- Image / Media

- Automotive
- Cryptography
- HPDA
- Machine Learning
- Deep learning
- Cloud
- Data Base
- Reference benchmarks (HPL, HPCG, Stream, DGEMM...)

CURRENT SELECTION

	App candidate													Selection criteria																	
Field		C	C1 (relev	ance in El	PI mark	et)	C2 (architecture feature it tackles/stresses								C3 (app. family)				C4 C5			•			C7 (Ref. data)			C8 C		C9	C10 C11
		НРС	HPDA/ AI	auto- motive	rele- vant NOW	In 5 years	CPU perfor mance	I/O	mem. capac.	mem. BW	mem. Lat.	vector units	Acceler ators (Stencil /Tenso r/)	Virtuali	Highly scalable tightly- coupled	embarrassin gly parallel	machine learning	data analytics		x86	COTS ARM	GPU F	Powe r	МРІ	Open (Open ACC	DCAS	Berke ley socke t			
	Total	39	14	9.3	41.3	43.4	40	6.7	22.85	33.65	17.4	25.75	18.4	1	30.25	9.7	10	9	24.35 33.4	42	25.8	17.45 1	15.85	30.5	32.6	6	3	0.5	24	26.4	18.55 21.1
	GROMACS	1	0	0	1	1	1	0	0	0	0	1	0.5	0	1	0	0	0	0.3 0.5	1	1	1	0.6	1	1	0	0	0	0.2	1	1 0.5
CFD Ray tracing /	CP2K	1	0	0	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0.5 1	1	0	1	0	0	0	0	0	0	0	1	0 0
Biology /	ALYA	1	0	0	0	1	1	0	1	0	1	0	0	0	1	0	0	0	0 0	1	1	0	0	1	1	0	0	0	0	1	0 0
	Genome assembly	1	0	0	1	1	1	0	1	1	1	1	1	0	0	0	1	1	1 1	1	0	1	0	1	1	0	0	0	0	1	0 0
	NEST EC-EARTH	1	0	0	1	1	1	0	0.1	0	1	0	0	0	1	0	0	0	1 1	1	0	0	0	1	0	0	0	0	0	1	0 0
	ECMWF DWARF	1	0	0	0	0	0	0	0.1	0	0	0	0	0	0	0	0	0	1 1	0	0	0	0	0	0	0	0	0	0	0	0 0
	NEMO	1	1	0	1	1	0.5	0.2	0	0.3	0	0	0	0	1	0	0	1	0 1	1	1	0	1	1	1	0	0	0	0	1	1 1
Climate	SPECFEM3D	1	1	0	1	1	0.6	0.2	0	0	0	0.2	1	0	1	0	0	0	0 1	1	1	1	1	1	1	1	1	0	1	1	0 1
	RTM	1	0	0	1	1	1	0	0	1	0	0.6	1	0	1	0.25	0	0	1 1	1	1	0	0	0	0	1	0	0	0.5	0	1 0
LIED C Fini	Grid	1	0	0	0	1	1	0	0	1	0	1	1	0	1	0	0	0	1 1	1	1	0	0	1	1	0	0	0	1	0	0 0
HEP & Fusion	tmLQCD GYSELA5D	1	0	0	1	1	0.6	0	0	0.3	0.1	0	0	0	1	0	0	0	0 0	1	0	0	0	1	1	0	0	0	0	0	0 0
	ABINIT	1	0	0	1	1	0.8	0	0	0.3	0.1	0.6	0	0	1	0	0	0	1 1	1	0	1	0	1	0.1	0	0	0	0	0	1 0
Material Sciences	Quantum ESPRESSO	1	0	0	1	1	0.8	0.2	0.3	0.5	0.5	0.5	1	0	1	0.2	0	0	1 1	1	1	1	1	1	1	0	0	0	0	1	1 1
Material Science	BigDFT	1	0	0	1	1	0.6	0	0	0	0	0	0.4	0	1	0	0	0	0 1	1	1	1	0	1	1	1	0	0	0	1	0 0
CFD	FEniCS	1	0	1	0.5	0.8	0.5	0.5	0.2	1	0	0.2	0.1	0	1	0	0	0	0.3 0.1	1	0.5		0.5	1	0	0	1	0		0.5	0 0
	NEK5000	1	0	1	1	1	1	1	0.5	1	0	0.7	0.8	0	1	0	0	0	0.7 1	1	0.5		0.5	1	1	1	0	0	0.8	1	1 1
	OpenFoam waLBerla	1	0	0	0.6	1	1	0.1	0.5	1	0	0	0	0	1	0	0	0	1 0.5	1	0.8	0.2	0.5	1	0	0	0	0	0	1	0 0
	NAS BT MZ	1	0	0	1	1	1	0	1	1	0	1	0	0	1	0	0	0	0 1	1	1	0	1	1	1	0	0	0	1	0	1 1
	NAS SP MZ	1	0	0	1	1	1	0	1	1	0	1	0	0	1	0	0	0	0 1	1	1	0	1	1	1	0	0	0	1	0	1 1
	AVBP	1	0	1	1	1	0.8	0	0	0	0.2	0.1	0	0	1	0	0	0	0 0	1	1	0	0	1	1	1	0	0	0	1	1 0
	Medical imaging	1	0	0	1	1	1	1	1	1	0	1	1	0	0.5	0.5	0	0	0.2 1	1	0	1	0	0	1	0	0	0	0	1	0 0
Image / Media	Image processing/(Trans)coding Spark	0	0	0	0	1	0.5	0.5	0.3	0.5	0	0	0.1	0	0	0	0	0	1 1	1	0	0	0	0	0	0	0	0	0	0	0 1
	Hadoop	0	1	0	1	0	0.5	0	0	0.5	0	0	0	0	0	1	0	0	0 0	1	0	0	0	0	0	0	0	0	0	0	0 0
Big Data Analytics	Flink	0	1	0	1	0	0.4	0	0	0.4	0.3	0	0	0	0	1	0	0	0 0	1	0	0	0	0	0	0	0	0	0	0	0 0
	Storm	0	1	0	1	0	0.8	0	0	0.5	0	0	0	0	0	1	0	0	0 0	1	0	0	0	0	0	0	0	0	0	0	0 0
Machine Learning	K-Nearest Neighbours	0	1	0.8	0.7	0.8	1	0	0.8	0.7	0.5	0.6	0	0	0	0	1	1	0 0	0	0		0.25	0	0	0	0	0	0	0	0 0
	High Performance Fuzzy Computing Random Forests	1	1	0.75	0.75	1	1	0	0.75	0.75	0.25	0.75	0.75	0	0.5	0.75	1	1	0 0	0	0		0.25	0	0	0	0	0	0	0	0 0
	Deep500	0	1	0.75	0.75	0	1	0	0	0	0.75	0.5	0.75	0	0.5	0.5	1	0	0 0	0	0	0.75	0.25	0	0	0	0	0	0	0	0 0
Deep Learning	DNN kernels	0	1	0	1	1	1	0	0.5	0.8	0	0	1	0	0	1	1	0	1 1	0	0	0	0	0	0.5	0	0	0			0.8 0
Cloud	VMcontainers	0	0	0	0	0	0.8	0	0.8	0	0	0	0	1	0	0	0	0	0 0	1	0	0	0	0	0	0	0	0	0	0	0 0
DBMS (Data	SQL	0	0	0	1	1	0	1	1	1	0.5	0	0	0	0	0	0	1	0 1	0	0	0	0	0	0	0	0	0	0	1	0 0
Base)	NoSQL	0	0	0	1	1	0	1	1	0.5	1	0	0	0	0	0	0	1	0 1	0	0	0	0	0	0	0	0	0.5		0.8	0 0
Automotive	Apollo Autonomous Driving Framework Lane tracking	0	0	1	1	1	1	0	0	0.5	0.5	1	0	0	0.25	0.5	0	0	0.1 1	1	1 1	1	0	0	1	0	0	0	1	1	0.5 0.5 0 0.5
Crypto acceleration	OpenSSL	0	0	1	1	1	0.5	0	0.1	0.1	0.1	0	1	0	0	0.5	0	0	0.25 0.5	1	1	0	0	0	0	0	0	0	0.5	1	0.25 0.5
	Lulesh	1	0	0	0	1	1	0	1	1	1	0	0	0	1	0	0	0	1 1	1	1	0	1	1	1	0	0	0	1	1	1 1
Hydrodynamics	HYDRO	1	0	0	0	1	1	0	1	1	1	1	0	0	1	0	0	0	1 1	1	1	0	1	1	1	0	0	0	1	1	0 1
PDE	minighost	1	0	0	0	0	0	0	0	1	0	0	1	0	1	0	0	0	0 0	1	0	1	0	1	0	1	1	0	0	0	0 0
	HPL	1	0	0	1	1	1	0	0.5	0.1	0	1	0	0	0	1	0	0	0 0	0	0	0	0	1	1	0	0	0	1	0	1 1
	HPCG Vector SpMV	1	0	0	1	0.8	0.5	0	0.5	1	0.1	1	0.5	0	0	0	0	0	0 0	0	0	0	0	1	1	0	0	0	1	0	1 1 0 1
	DGEMM	1	1	0	1	1	0	0	1	1	1	1	0.5	0	1	0	1	0	1 1	1	1	0	1	1	1	0	0	0	1	1	0 1
Reference	Somier	1	0	0	1	1	1	0	1	1	1	1	0.5	0	1	0	0	0	1 1	1	1	0	1	1	1	0	0	0	1	0	0 1
benchmarks	FFT	1	0	0	1	1	0	0	1	1	1	1	0	0	1	0	0	1	1 1	1	1	0	1	0	1	0	0	0	1	1	0 1
	HACC Kernels	1	1	0	0	0	1	0	0	1	1	1	1	0	0	1	0	0	1 1	1	1	0	0	1	1	0	0	0	1	0	1 1
	27- and 7-points Stencil	1	0	0	1	1	1	0	1	1	1	1	1	0	1	0	0	0	1 1	1	1	0	0	1	1	0	0	0	1	0	1 1
	Stream FFTW	1	0	0	1	1	0.2	0	0	0.5	0.1	0.5	0	0	0	0	0	0	0 0	0	0	0	0	0.5	1	0	0	0	1	0	1 1
	111111	-			-	-	0.5			0.5	0.5	1 0.5			-	Ū			0			•		0.5	-				-		

EPI WP1 BENCHMARK SUITE

- Partially public: https://gitlab.version.fz-juelich.de/epi-wp1-public
- Public repositories include
 - Vanilla version
 - Ported version (currently SVE only)
- Non-public repositories include
 - Non-public codes
 - Built and test scripts

EPI WP1 GPP SIMULATOR ENVIRONMENT

- Gem5 simulator (JSC+Forth)
 - Relatively accurate, but very slow → simulation of a few cores
- SESAM simulator (CEA)
 - Simulator for multi-core system-on-a-chip architecture
 - Simulations at different levels of detail possible
- MUSA simulator (BSC)
 - Multi-level simulator for simulations at different scales

CURRENT CO-DESIGN ACTIVITIES

- Exploration of different GPP configurations
 - Cache configuration
 - Number of cores and clock speeds
 - Network-on-chip configurations and HBM attachment
- Exploitation of accelerators
 - Limitation: Programming models and simulators at an early stage
- Approach: Focus on a small set of synthetic benchmarks and application kernels
 - xgemm, stream, FFT, OpenFlowLB, RTM kernels

NEW ARM SIMD ISA: SCALABLE VECTOR EXTENSION (SVE)

- Key feature: Vector length agnostic
 - Vector length not defined at compile time
 - Multiple lengths supported by ISA: 128, 256, ..., 2048 bit
- Required hardware support for VLA
 - Update of predication registers
 - Update of loop counters

Arm clang 19.3

```
x8, xzr
       mov
                z0.d, d0
       mov
       whilelo pl.d, xzr, x9
               p0.d
       ptrue
.LBB0 2:
       Ld1d \{z1.d\}, p1/z, [x0, x8, 1s1 #3]
        ld1d {z2.d}, p1/z, [x1, x8, 1s1 #3]
       fmad z1.d, p0/m, z0.d, z2.d
        st1d {z1.d}, p1, [x1, x8, lsl #3]
       incd x8
       whilelo pl.d, x8, x9
       b.mi .LBB0 2
.LBB0 3:
       ret
```


SVE: PORTING OPTIONS

- Auto-vectorisation
 - Rely on compiler to identify opportunities for vectorisation
 - Compilers: gcc-8, clang-8, armclang 19.x (or more recent)
 - Pro: portable code
 - Con: Compiler still often fail to recognise opportunities for vectorisation
- ARM C Language Extensions (ACLE) for SVE
 - Makes features of the ARM architecture directly available in C and C++ programs https://static.docs.arm.com/100987/0000/acle_sve_100987_0000_00_en.pdf
 - Supported by gcc, armclang (not clang)
 - Pro: Control on code generation
 - Con: Non-portable code

SVE: COMPILING AND EXPLORING

- Need access to Arm-based platform
 - E.g. Juawei prototype at JSC https://trac.version.fz-juelich.de/armlab/wiki/Public/Account
- Compilation and emulation
 - Allow compiler to generate SVE instructions, e.g. gcc -march=armv8-a+sve ...
 - Use Arm Instruction Emulator for execution, e.g. armie -msve-vector-bits=256 ...
- Performance analysis
 - Initial assessment based on instruction count: armie -msve-vector-bits=256 --iclient libinscount.so -- ./myprog.x
 - Full performance analysis requires simulation

OPTIONS FOR FUTURE ACTIVITIES

- Provisioning of expertise on co-design applications
 - E.g. on workloads
- Porting to Arm SVE (and later accelerators)
 - Access to Arm-based platforms can be provided
 - EPI can help with links to other initiatives supporting Arm enablement
- Performance exploration
 - Access to simulators in very selected cases
 - Beware of required expertise and effort

PARTNERS INVOLVED IN EPI CO-DESIGN

