Hardening an academic core
for Industrial Use

Roger Espasa

SemiDynamics
2020.06.29

A few words about SemiDynamics

* Small Startup, European based

* Previous project: 7nm Machine Learning Accelerator
 Started from an academic core, then heavily adapted it to target needs

* Currently developing a RISC-V OOO core with a vector unit for the up-
coming European Processor Initiative accelerator
 Started from an academic core
* Added to it the RISC-V vector extension (still WIP)
* Heavily modified the Load/Store unit
* Extensive re-verification

Semidynamics Confidential 3/15/2017

Academic cores are a great
starting point...

...Tor startups
...Tfor big companies
...Tor fast prototyping

...used Rocket (UC Berkeley)
...used Ariane (ETH)

..very happy with both

Yet, there’s a bit of work before
hitting volume...

(still, you’re much better off starting from these academic cores!)

Source Code

* Rocket: Chisel(Scala)
e Authors claim big productivity gains

* Ariane: System Verilog
e Better matches industry tools

* I[n general, very good coding styles
* Clear, easy to ready code
* |n Chisel case, you need to grasp Chisel, of course! ©

* Good Assertions and coverage points present in code

 (personal preference) flip flops should be hidden inside macro
e 'RST _EN _FF(clk,d, g, en, rst)
 Instead of “always_ff @(posedge clk or negedge)”
* Forces “state” out of FSMs....

Verification

e Academic cores successfully boot Linux
* i..e, They start at pretty good quality

* Yet you’ll want to invest in additional verification
» Additional Coverage points && Assertions
e Additional Randoms
* U-S-M transitions, Interrupts
 Compressed instructions corner cases

A taste of issues found on FP logic

* minimum negative value must set invalid bit in fcvt

e Underflow when result is denormal

* sticky bit incorrectly set on exact SQRT, rounding caused a ulp difference.
* rounding issues on fcvt for signed conversions on maximum positive

e Underflow should only be set if result is also inexact

* NV flag was incorrectly computed for infinite cases

* 0/0 incorrectly set the DZ flag

* issue with the sticky bit and the ulp for SP values

 FCVT instructions didn't take infinites as special values

 UF and OF were swapped in case the result is below the minimal value
* Sticky bit was set to 0 in case of underflow resulting in incorrect NX bit
e ...and another 20....

Load/Store Unit

Not all academic cores support coherency; most are AXI based

. |\/|ISS pipeline” typically under-optimized; opportunities for improving
From blocking to non-blocking
* From N-stage FSM to 1-stage FSM
* Hit-under-miss?
e Hit-under-fill?
* How many misses?
e Write-back?

* Re-pipeline to match your SRAM array technology
e Off-the-shelf code may or may not match your needs

* For 512b read-out, may need to reconsider how ways are read/flopped

* After optimization, need to re-do debug support
e Change PMA to match your SoC Memory Map
e Cache management ops missing (this is a RISC-V definition gap!)

Low-level clock gating

 Commercial tools very good at inferring clock gating

* But they can always use a bit of help
* Expose flip-flop “enable” clearly
* Regional clock gates are not that obvious for tools

* Most ROl comes from fine-grain enables
e “turn off this block when X && Y && 7

* Large module gating good for standby
e Turn off all “core” / “front-end” / “Isu”
* Needs hand intervention

SoC glue

* Both Rocket and PULP come with lots of goodies
e PLIC, CLINT, AXI Masters, Slaves, Debug Module,
* Synchronizers, level shifters...

* Yet Likely your SoC requires something special

* Lots of cores ?
e Distribution of debug signals
* Inter-core signaling (events? IPI? Other?)
* Special NoC

* Errors
* i.e., What to do on an AXI device error? — will require re-plumbing
* |f you have ECC, how/where/when do you report sbe and dbe?

* Fuses

* Secure Boot

Summary

* Overall, academic cores are an excellent starting point
* Boot Linux
* Well written
* Well supported

* You’ll obviously have to add work to go into production
» Additional verification to make sure corner cases covered
* Depending on target market, improve cache subsystem performance
* Depending on power targets, improve clock gating
* Add SoC dependent features

e Strong recommendation to start from an academic core!

