
Hardening an academic core 
for Industrial Use

Roger Espasa

SemiDynamics

2020.06.29



A few words about SemiDynamics

• Small Startup, European based

• Previous project: 7nm Machine Learning Accelerator
• Started from an academic core, then heavily adapted it to target needs

• Currently developing a RISC-V OOO core with a vector unit for the up-
coming European Processor Initiative accelerator
• Started from an academic core

• Added to it the RISC-V vector extension (still WIP)

• Heavily modified the Load/Store unit

• Extensive re-verification

3/15/2017Semidynamics Confidential 2



Academic cores are a great 
starting point...



...for startups

...for big companies

...for fast prototyping



...used Rocket (UC Berkeley)

...used Ariane (ETH)

...very happy with both



Yet, there’s a bit of work before 
hitting volume...

(still, you’re much better off starting from these academic cores!)



Source Code

• Rocket: Chisel(Scala)
• Authors claim big productivity gains

• Ariane: System Verilog
• Better matches industry tools

• In general, very good coding styles
• Clear, easy to ready code 
• In Chisel case, you need to grasp Chisel, of course! ☺

• Good Assertions and coverage points present in code
• (personal preference) flip flops should be hidden inside macro

• `RST_EN_FF ( clk, d, q, en, rst )
• Instead of “always_ff @(posedge clk or negedge)” ….
• Forces “state” out of FSMs….



Verification

• Academic cores successfully boot Linux 
• i..e, They start at pretty good quality

• Yet you’ll want to invest in additional verification
• Additional Coverage points && Assertions

• Additional Randoms

• U-S-M transitions, Interrupts

• Compressed instructions corner cases



A taste of issues found on FP logic

• minimum negative value must set invalid bit in fcvt

• Underflow when result is denormal

• sticky bit incorrectly set on exact SQRT, rounding caused a ulp difference.

• rounding issues on fcvt for signed conversions on maximum positive

• Underflow should only be set if result is also inexact

• NV flag was incorrectly computed for infinite cases

• 0/0 incorrectly set the DZ flag

• issue with the sticky bit and the ulp for SP values

• FCVT instructions didn't take infinites as special values

• UF and OF were swapped in case the result is below the minimal value

• Sticky bit was set to 0 in case of underflow resulting in incorrect NX bit

• … and another 20….



Load/Store Unit

• Not all academic cores support coherency; most are AXI based

• “Miss pipeline” typically under-optimized; opportunities for improving
• From blocking to non-blocking
• From N-stage FSM to 1-stage FSM
• Hit-under-miss?
• Hit-under-fill?
• How many misses?
• Write-back?

• Re-pipeline to match your SRAM array technology
• Off-the-shelf code may or may not match your needs

• For 512b read-out, may need to reconsider how ways are read/flopped

• After optimization, need to re-do debug support

• Change PMA to match your SoC Memory Map

• Cache management ops missing (this is a RISC-V definition gap!)



Low-level clock gating

• Commercial tools very good at inferring clock gating

• But they can always use a bit of help
• Expose flip-flop “enable” clearly

• Regional clock gates are not that obvious for tools

• Most ROI comes from fine-grain enables
• “turn off this block when X && Y && Z

• Large module gating good for standby
• Turn off all “core” / “front-end” / “lsu”

• Needs hand intervention



SoC glue

• Both Rocket and PULP come with lots of goodies
• PLIC, CLINT, AXI Masters, Slaves, Debug Module, ….
• Synchronizers, level shifters…

• Yet Likely your SoC requires something special
• Lots of cores ?

• Distribution of debug signals
• Inter-core signaling (events? IPI? Other?)
• Special NoC

• Errors
• i.e., What to do on an AXI device error? – will require re-plumbing
• If you have ECC, how/where/when do you report sbe and dbe?

• Fuses
• Secure Boot



Summary

• Overall, academic cores are an excellent starting point
• Boot Linux

• Well written

• Well supported

• You’ll obviously have to add work to go into production
• Additional verification to make sure corner cases covered

• Depending on target market, improve cache subsystem performance

• Depending on power targets, improve clock gating

• Add SoC dependent features

• Strong recommendation to start from an academic core!


