

FRAMEWORK PARTNERSHIP AGREEMENT IN EUROPEAN LOW-POWER MICROPROCESSOR TECHNOLOGIES

THIS PROJECT HAS RECEIVED FUNDING FROM THE EUROPEAN UNION'S HORIZON 2020 RESEARCH AND INNOVATION

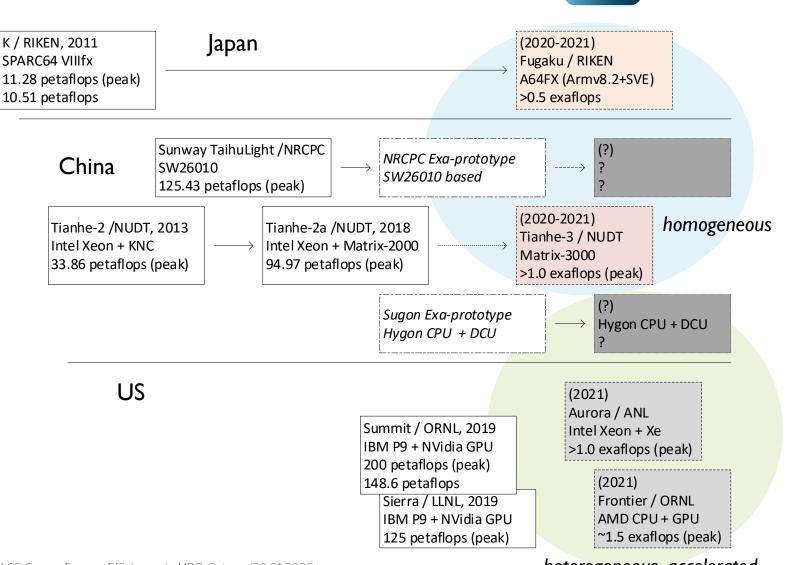
PROGRAMME UNDER GRANT AGREEMENT NO 826647

D

54TH EDITION OF THE TOP500 LIST (NOVEMBER 2019)

- Top#1 performance today:
 - 0.2 10¹⁸ Flop/s Peak
 - It is 1/5 of Exascale level of performance
- Users:

Rank	Site	System	Cores	Rmax (TFlop/s)	Rpeak (TFlop/s)	Power (kW)
1	DOE/SC/Oak Ridge National Laboratory United States	Summit - IBM Power System AC922, IBM POWER9 22C 3.07GHz, NVIDIA Volta GV100, Dual-rail Mellanox EDR Infiniband IBM	2,414,592	148,600.0	200,794.9	10,096
2	DOE/NNSA/LLNL United States	Sierra - IBM Power System AC922, IBM POWER9 22C 3.1GHz, NVIDIA Volta GV100, Dual-rail Mellanox EDR Infiniband IBM / NVIDIA / Mellanox	1,572,480	94,640.0	125,712.0	7,438
3	National Supercomputing Center in Wuxi China	Sunway TaihuLight - Sunway MPP, Sunway SW26010 260C 1.45GHz, Sunway NRCPC	10,649,600	93,014.6	125,435.9	15,371


Processor design & technology:

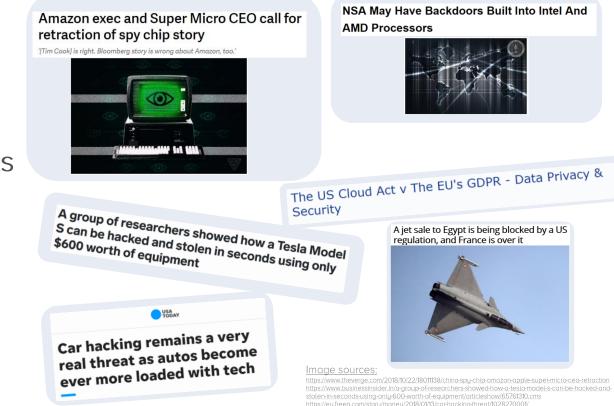
Chip	Design	Manuf.
IBM POWER9		
NVIDIA Volta GV100		*
Sunway SW26010	*3	*3

RACE TO EXASCALE

- CPU architecture choice:
 - Japan approach: Arm/SVE (homogeneous)
 - China approach: Custom many-cores (homogeneous)
 - US approach: x86 + GPU (heterogeneous)

Copyright © European Processor Initiative 2020. Power Management in EPI/PRACE Course Energy Efficiency in HPC, Ostrava/29-01-2020

heterogeneous, accelerated


European Processor Initiative

epi

WHY EUROPE NEEDS ITS OWN PROCESSORS

- Processors now control almost every aspect of our lives
- Security (back doors etc.)
- Possible future restrictions on exports to EU due to increasing protectionism
- A competitive EU supply chain for HPC technologies will create jobs and growth in Europe
- Sovereignty (data, economical, embargo)

https://www.pearse-trust.ie/blog/the-us-cloud-act-v-the-eus-gdpr-data-privacy-security https://www.defensenews.com/global/europe/2018/08/01/a-jet-sale-to-egypt-is-being-blocked-by-a-us-

regulation-and-france-is-over-it.

EUROPE'S AMBITION: EUROHPC

- Developing a new European supercomputing ecosystem: HPC systems, network, software, applications, access through the cloud
- Making HPC resources available to public and private users, including SMEs.
- Stimulating a technology supply industry

EUROPEAN PROCESSOR INITIATIVE

Design a roadmap of future European low power processors

Copyright © European Processor Initiative 2020. Power Management in EPI/PRACE Course Energy Efficiency in HPC, Ostrava/29-01-2020

ENGINEERING

CHALMERS UNIVERSITÀ DI PISA

MA MATER STUDIORUM

eDI Processor Initiative

loint Underta

<u>Budget</u>: 80 M€

SIPEARL

EB Elektrobit

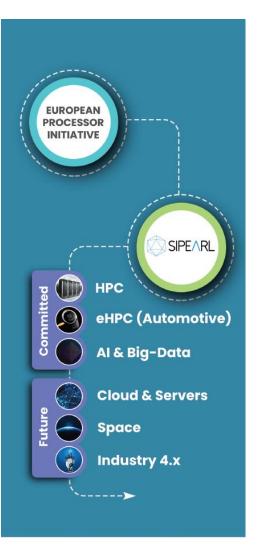
European

EPI TECHNOLOGIES

Energy Efficiency Adopt Arm general-purpose CPU core with SVE / vector acceleration in the first EPI chip

- Develop power management solutions for the EPI chip
- Develop acceleration technologies based on RISC-V for better DP GFLOPS/Watt performance
- Inclusion of MPPA for real-time application acceleration
- Inclusion of eFPGA for reconfigurable logic

Modularity Supply sufficient Memory Bandwidth (Byte/FLOP)

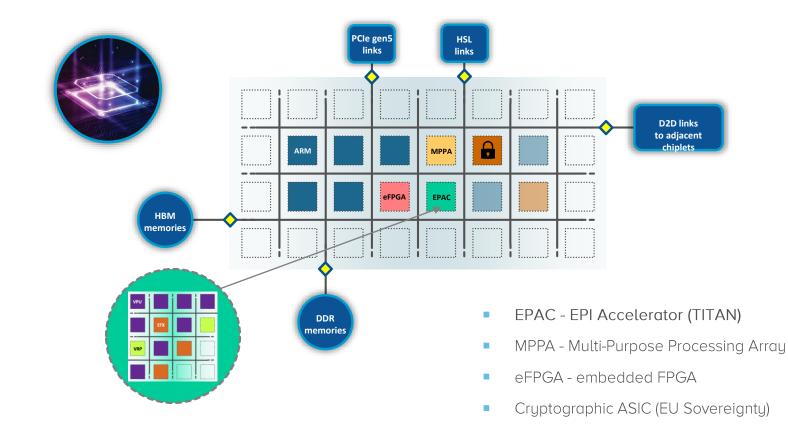

- Focus on programming models to include accelerations.
- Develop a Common Platform to enable EPI accelerations and that eases incremental roadmap implementation

EPI FABLESS COMPANY

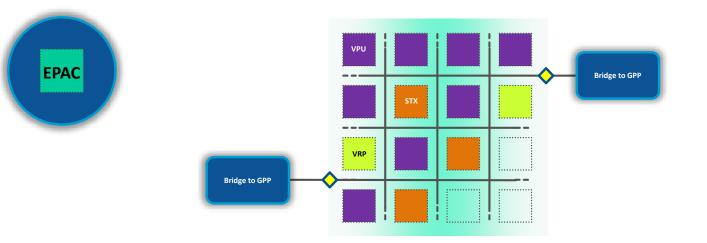
- EPI's Fabless company
 - licence of IPs from the partners
 - develop own IPs around it
 - licence the missing components from the market
 - generate revenue from both the HPC, IA, server and eHPC markets
 - integrate, market, support & sales the chip
 - work on the next generations

CONCLUSION

- HPC is crucial to resolve societal challenges and preserve European competitiveness
- Europe is going in the right direction with EuroHPC. This must be sustained in the long-term
- The chip design effort must continue for the EU's security and competitiveness, and should create a processor ecosystem covering IoT, servers, cloud, autonomous connected vehicles and HPC

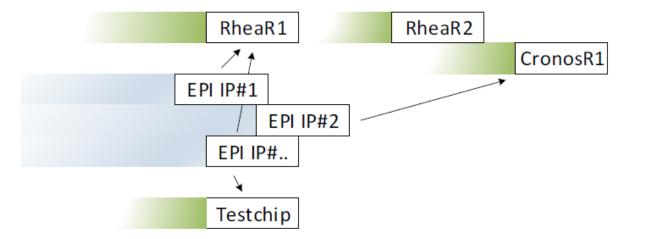


European Processor Initiative

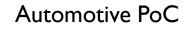


GPP AND COMMON ARCHITECTURE

EPAC - RISC-V ACCELERATOR



- EPAC TITAN = EPI Accelerator
- VPU Vector Processing Unit (plan of record)
- STX Stencil/Tensor accelerator (PoR)


RHEA PROCESSOR

- Rhea is the first EPI General Purpose Processor
- Rhea targets HPC application
- Rhea is the first « instanciation » of EPI Common Platform
- Rhea design is led by SiPEARL (the EPI fabless company) and joint-developed by EPI partners.

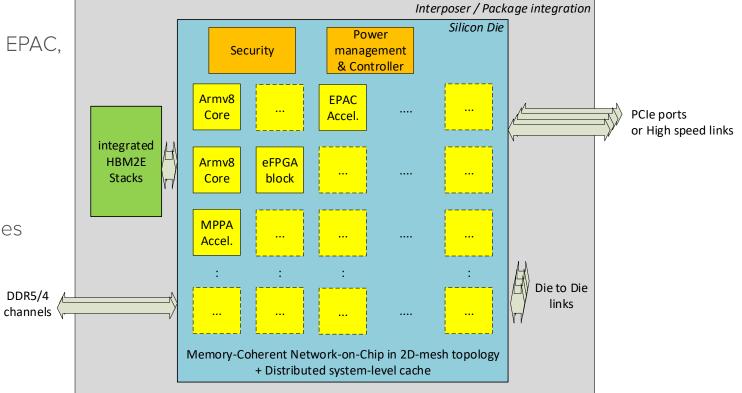
Rhea chip will be integrated into test platforms in order to validate the hardware units, develop the software, and run applications.

PCIe daughter card

Copyright © European Processor Initiative 2020. Power Management in EPI/PRACE Course Energy Efficiency in HPC, Ostrava/29-01-2020

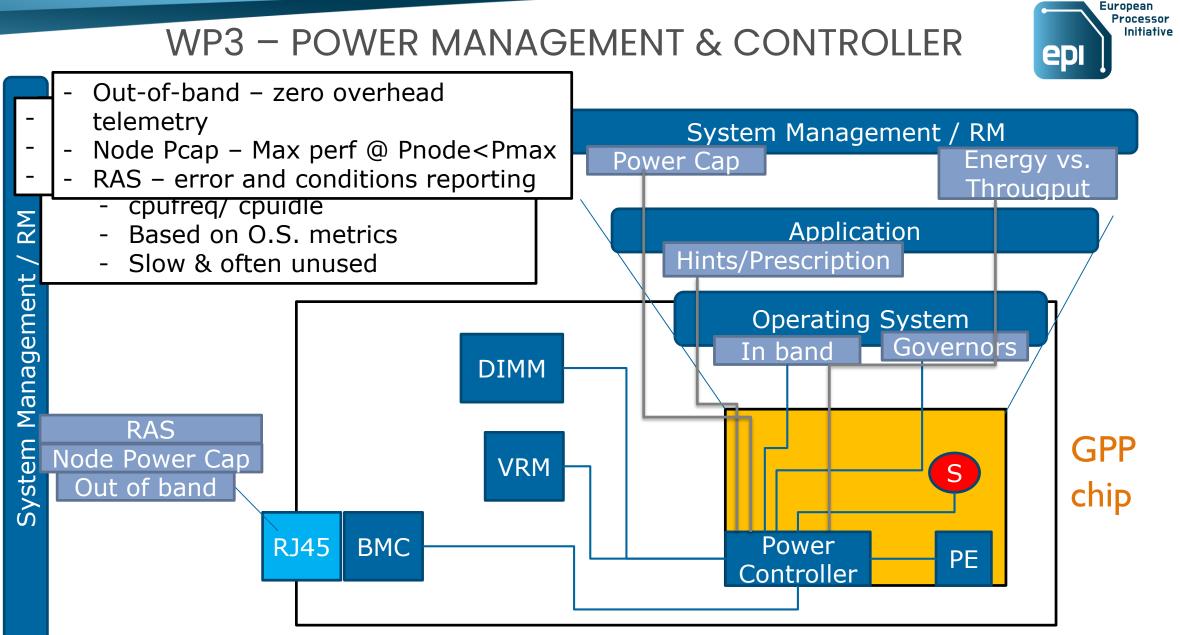
HPC blade

RHEA DESIGN


- Generic processing multi-core backbone:
 - Multi-core Arm Zeus processor with SVE engines for pre-ExaScale level generic processing.
 - Coherent NoC with distributed system level cache to keep the data local.
- Prototypes of High energy-efficient accelerator tiles:
 - RISC-V based acceleration (EPAC) for better GFLOPS/Watt performance.
 - Multi-Purpose Processing Array (MPPA-Kalray) for real-time application acceleration.
 - eFPGA (Menta) reconfigurable logic for flexibility.
 - Accelerators work in I/O coherent mode and share the same memory view as the multi-core backbone.
- HBM2E, DDR5 memory support.
- PCIe gen5 support for loosely coupled accelerators.
- High speed links for SMP extension and tightly coupled accelerators.
- Power Management infrastructure with low voltage support for energy efficiency
- Security infrastructure.
- Peripherals to connect an automotive MCU for PoC purpose.
- First Rhea chip will be fabricated in 6nm technology aiming at the highest processing capabilities and energy efficiency

RHEA ARCHITECTURE

- Memory-coherent NoC connects
 - Array of computing units (CU): Arm cores, EPAC, MPPA, eFPGA
 - Memory and I/O controllers
 - Bridge to links
- High speed links
 - Die-2-Die links to connect on-package dies
 - HSL links to connect on-board packages
- Top level infrastructures
 - Power management & controller
 - Security


NoC: network on chip HSL: High speed links (with memory coherent support)

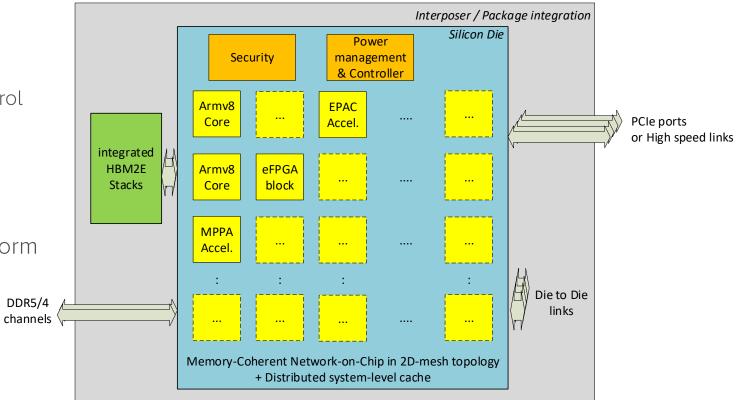
POWER ASPECTS

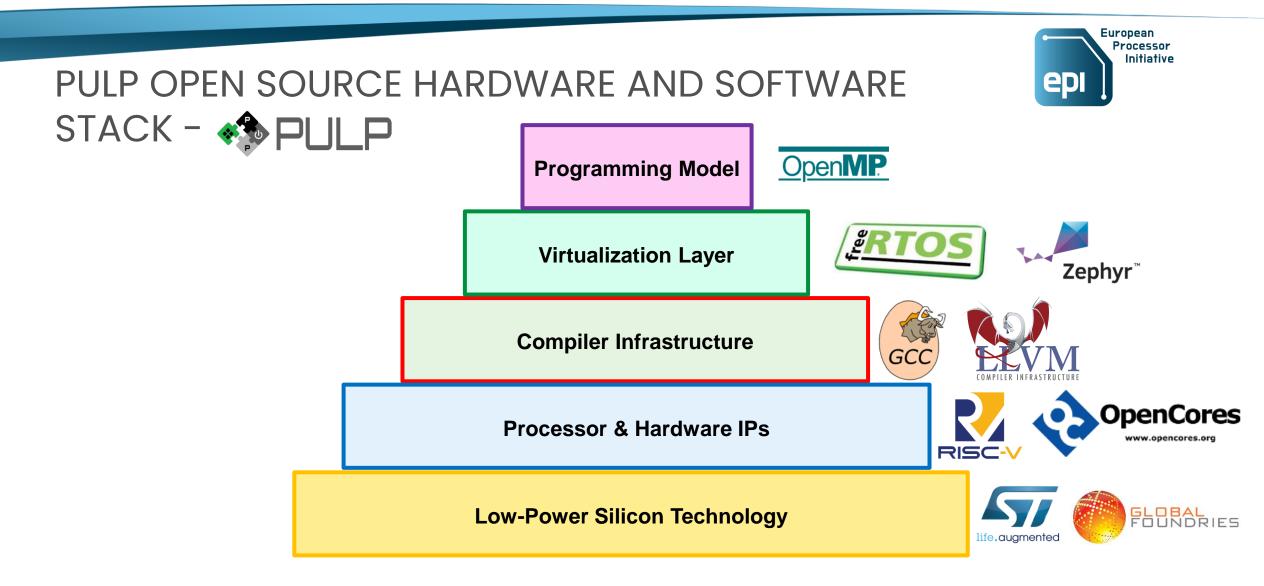
ANDREA BARTOLINI (UNIBO) – POWER MANAGEMENT LEADER

POWER MANAGEMENT SOA & REQUIREMENTS

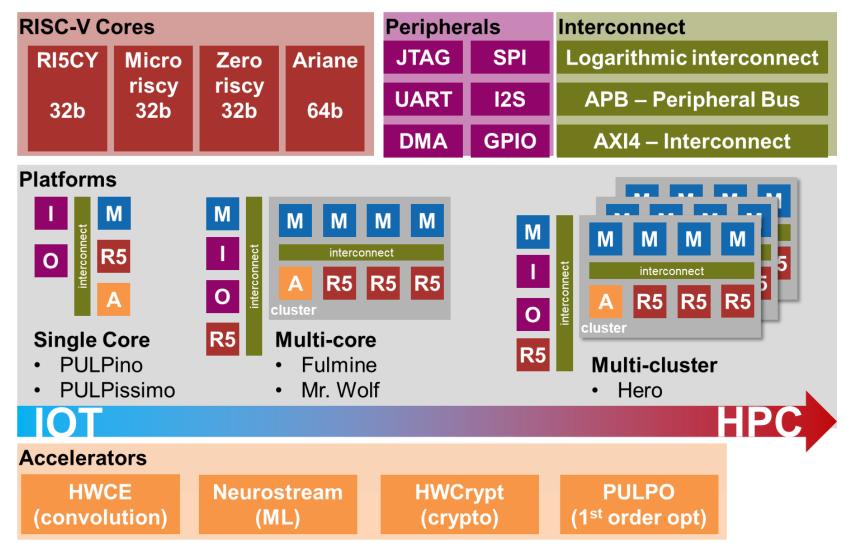
	Intel	IBM	ARM	AMD	Cray	Fujitsu
Monitor	S, M, A, T	N, S, M, A, T, U	S, M, T	N, S, M, A, T	N, S, M, A, N	N, S, C, M
(Domain,Gra	1ms	500us ,10ms	1-10KHz with	1 sec (C),	OOB	1ms (N),
nularity)		aggregation	SCP	1ms (G)	(100ms)	~ns - model
		16ms for T & U, 100ms				based (C)
		aggregation				
Control	S, M	N, S, M, A	S, M	N, S, M, A	N, S, M, A	S, C, M,
(Domain,Gra	RAPL 1ms	10-100ms	1-10KHz	~secs	DVFS, RAPL,	DVFS,
nularity)	(in-band),		(100ms to		min-max	Decode
	DVFS 500us		1s)		range <i>,</i> 10-	Width,
					30s at job	HBM2 B/W
					launch	
Interfaces,	RAPL MSRS,	OpenBMC,	ACPI, SCP	Likwid,	CapMC,	Power API,
Tools, etc	msr-safe,	amester,	(sys ctrl	PAPI,	PAPI, Cray	PAPI
	libmsr, PAPI,	Memory Map	proc), IPA	Memory	BMC	
	likwid		(intelligent	Мар	interfaces	
	Source PowerStack 19		allocator), PAPI			

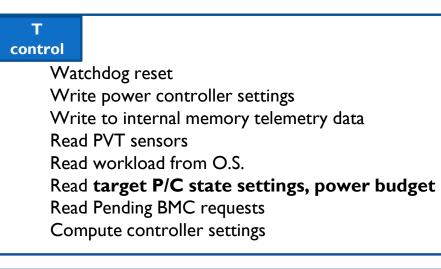
EPI power management design targets:

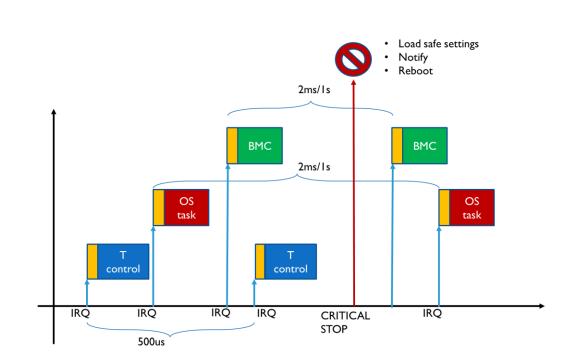

- Support for fine grain power monitoring, and control
- An higher performance power controller capable of supporting advanced power control algorithms.


Socket (S), Core (C), Memory (M), Accelerator (G), Node (N), Utilization (U), Temperature (T)

GENERAL ARCHITECTURE


- Top level infrastructures
 - Power management & controller
 - Dedicated power management and control network
 - Security
- EPI Power Management Subsystem
- RISC-V ISA, Derived from the PULP platform
- Parallel processor w. DSP extensions
- Open-Source Design


https://github.com/pulp-platform


THE POWER CONTROLLER FIRMWARE

PM task

BMC

- Read voltage regulator, power, status (VR)
- Power model update
- Read pending command queue
- Decode Command/data
- Perform action:
 - Change target P/C state, power budget
 - Set pending BMC
 - Ask telemetry data

[ICECS 19] A. Bartolini et al. A PULP-based Parallel Power Controller for Future Exascale Systems

CONCLUSIONS

- Power management is a key aspect of HPC processors
- Implemented by mean of a embeddded computing subsystem with extensions for interfacing with the power management IPs.
- EPI will leverage a best-in class power management subsystem based on parallel architecture with DSP extensions.