

Open Hardware

Jürgen Becker – KIT – EDABarCamp @ IBM

Institute for Information Processing Technologies (ITIV)

KIT - The Research University in the Helmholtz Association

www.kit.edu

Context and Motivation

- Current embedded systems are subject to challenging requirements:
 - Increased performance is necessary to facilitate the execution of computationally intensive algorithms (machine learning, big data, ...)
 - Power and energy consumption must be minimized to facilitate the constraints of mobile and wireless devices (internet of things, ...)
 - A sufficient degree of **dependability** is necessary to employ digital systems in safety-critical environments (autonomous driving, ...)

Existing technology must evolve in order to meet these requirements ⇒ Open hardware can play a key role in this research process

Agenda

Motivation

- OpenHardware as enabler in researching novel heterogeneous architectures
- EPI: European Processory Initiative
 - EPAC Accelerator, eFPGA
- InvasIC: Invasive Computing
 - *i*-Core: LEON3 Extension for reconfigurable near-memory computing

ARoMA: Adaptive Redundancy for Manycore Architectures LEON3 Extensions for Adaptive Redundancy

InvasIC

ARoMA

EPI – European Processor Initiative

- Dec. 2018 to End of 2021
- Target markets: HPC and Automotive
- Proposal drivers:
 - Create a competitive European HPC and Automotive platform

→ Mission: undependable EU Exascale machine by 2023

More Info: https://european-processor-initiative.eu

EPI Roadmap

Institute for Information Processing Technologies (ITIV)

EPI Common Architecture

- MPPA Multi-Purpose Processing Array
 - eFPGA embedded FPGA
 - EPAC EPI Accelerator

EPAC – EPI RISC-V Accelerator

8 RISC-V based Vector Processing Units (VPUs)

- Stencil/Tensor Accelerators (STX), controlled by RISC-V cores
- RISC-V based Variable Precision Co-Processor (VRP)
- Coherent L2 Cache Banks
- NoC Interconnect

Copyright © European Processor Initiative 2019.

Institute for Information Processing Technologies (ITIV)

EPI automotive

- Autonomous driving systems
- Connected mobility
- EPI: A powerful data fusion platform –the automotive embedded HPC platform
- EPI heterogeneous multicore architecture can provide enough performance and low power consumption in parallel

EPAC – Variable Precision Processor (VRP)

- Efficient Computation in Scientific Domains
 - e.g., Finite Element Simulations
- Embedded as Functional Unit in RISC-V Core

EPAC – STX Accelerator

- Domain-Specific acceleration of both Deep Learning and HPC workloads
- Up to 4 clusters of STX blocks controlled by RISC-V cores

Local Scratchpad Access

EPI – eFPGA

- Provided by Menta S.A.S.
- Optimized for GP-HPC and automotive applications
 - e.g. image processing using machine learning

Run-time reconfigurable crypto and general purpose accelerators

EPI – eFPGA automotive application scenarios

- Face detection for access control = unlock and engine start
- Object detection can be used as an early stage for an ADAS use case
- Use of state-of-the-art machine learning algorithms

INVASIC ARCHITECTURE

14 February 19, 2020 J. Becker - edaBarCamp Lightning Talk

Institute for Information Processing Technologies (ITIV)

InvasIC Heterogeneous Architecture

- Tiled many-core architecture
 - One or more CPUs per tile
 - Network-on-Chip (NoC) interconnect
 - Tile Local Memory (TLM)
- PGAS memory architecture
- LEON3 cores and GRLIB from Cobham Gaisler
- NoC router and network adapter offering guaranteed service connections
- FPGA Prototype

Near Memory Computing (NMC)

- Bandwidth is limiting factor of data-centric workloads
 - Neural Networks, Big Data
 - Moving data > processing data
- In-Memory Computing
 - Processing inside memory chips
 - Dependant on data locality
 - High parallel bandwidth
- Close-to-Memory Computing
 - Accelerators next to memory controller
 - Less restricted by data locality

M. Gao and C. Kozyrakis, "HRL: Efficient and flexible reconfigurable logic for near-data processing," in 2016 IEEE International Symposium on High Performance Computer Architecture (HPCA), March 2016

NMC in InvasIC

Networks-on-Chip (NoC)

- Complex memory hierarchy
- More layers of data locality (Global Memory/Tile-Local Memory)

i-Core: Runtime-adaptive processor

- Integrated reconfigurable FPGA fabric
- Close to TLM with high bandwidth
- Near-memory computations

AROMA - ADAPTIVE REDUNDANCY FOR MANYCORE ARCHITECTURES

ARoMA

- Current mixed criticality systems lacking fault-tolerance
- Adaptive Redundancy for Manycore Architectures (ARoMA) targets a high computing performance coupled with high safety integrity to close the gap
- Cobham Gaisler's LEON3 as enabler for research on processor architectures
 - Open source integer unit
 - Open source L1-cache
 - Free ecosystem (compiler, debug tools)
- ARoMA supports different fail-operational modes
 - Runtime-adaptive lockstep architecture
 - Runtime-adaptive cache-based check-pointing

Institute for Information Processing Technologies (ITIV)

ARoMA – Pipeline Extension

- Based on the LEON3's open source 7-stage pipeline implementation
- The integer unit (IU) is extended by a commit stage performing the following tasks
 - Compares the results of the execution stages of two pipelines to detect faults
 - Determine PC and NPC for the rollback
 - Load of a processor state to realize an adaptive runtime lockstep cluster
 - Save current processor state
 - Restore saved processor state to release the lockstep cluster and execute the previous software
- The fetch stage is modified to support the rollback mechanism

ARoMA – Cache Extension

- Based on the LEON3 open source Level-1 cache controller
- Modification of the Level-1 data cache to realize an adaptive write strategy
 - Write-through with cache coherence
 - Write-back without cache coherence
- Utilizing the incoherent write-back caches to realize cache-based checkpoints. Valid data will be written back to the memory. Faulty data initiate an rollback

