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Motivation & Goals

The EPI project brings a chip with an accelerator (EPI Accelerator, EPAC) that can speed different
workloads up but still needs to be programmed.

In this session we will focus only on the vector accelerator.

Our goal is to answer the following questions:

= What is our suggestion programming the EPI vector accelerator
m  There may be other valid approaches, today we will see one

= How to gain insights of an application running in the EPI vector accelerator
m  Does my application map well to the accelerator?
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What is in the menu today?

m Tools to compile and emulate vector code
m LLVM-based Compiler
m Vehave Functional Emulator

m Tools to gain insights
m Compiler Explorer-based tool
m Paraver Trace Visualization and Analysis



European
Processor
Initiative

Context
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The big picture of the EPlI accelerator

A simplified view of the EPI architecture for the sake of this tutorial is as follows

A program starts running in the GPP. Parts of the program that are suitable for acceleration are offloaded
to the accelerator. This will be done using OpenMP 4.5 #pragma omp target

Both the GPP and the accelerator run Linux. Memory is not shared between the GPP and EPAC but the
goal is to minimize explicit copies thanks to the underlying memory architecture of EPI.
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The vector accelerator

The vector accelerator is a RISC-V 64-bit core suitable for 64-bit Linux (RV64GC, i.e.
mul/div, float32, float64, atomics) extended with the V-extension.

The V-extension is a standard vector extension of the RISC-V ISA still being drafted by the
RISC-V community.

The vector accelerator is suitable for offloading HPC kernels that can be accelerated using
vector instructions.
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RISC-V V-extension (1)

RISC-V as an ISA is made up by a base ISA and a number of standard extensions. The V-extension
provides vector processing to RISC-V.

Current stable draft ( ) is version 0.8. We will be using version 0.7.1in
this tutorial and the differences are not important today.

Main highlights of the V-extension are

= Animplementation-defined length of the vector called VLEN
m 32 vector registers of VLEN bits
m  Removes the “we need a whole new ISA if we want longer vectors” pain point (e.g. AVX2 » AVX512)

= Animplementation-defined maximum element-width called ELEN
m  The program can operate with vectors of 8-bit elements up to ELEN bits elements
m  Alleviates the “my market segment does not care about vectors of 64-bit elements”


https://github.com/riscv/riscv-v-spec

;;h Frocesser
RISC-V V-extension (2)

= A “setvector length” instruction that sets both the number of elements being operated (VL, vector
length) and the width of the elements being operated (SEW, single-element width)
m VL is reminiscent of classical vector architectures
= Alleviates vector ISAs taking a lot of encoding space because of the plethora of data-types

= Alength multiplier LMUL that allows grouping vector registers
m  Allows maximizing register utilization without impacting code size at expense of a smaller number of
registers
= Valid values for LMUL are 1 (no grouping), 2 (16 registers of 2 x VLEN bits), 4 (8 registers of 4 x VLEN bits)
and 8 (4 of 8 x VLEN bits)

= Vector masking support
m  Useful when vectorizing codes that have non-uniform control flow



'i)

European
Processor
Initiative

RISC-V V-extension (3)

Quick recap before we continue. VLEN
The implementer chooses VLEN and ELEN

= A vector register has VLEN bits
= The maximum element width (in bits) we can divide a
vector register is called ELEN

Num. elements:

VLEN / ELEN

ELEN

The programmer at runtime can define Num. elements:

= SEW, width in bits of the elements we are going to SEW VLEN/SEW
operate, 8 < SEW < ELEN

= VL, the number of elements (not bits!) we are going to gy
operate 0 < VL < VLEN / SEW _ L VLEN / SEw
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Examples
= Add two vectors of 32-bit integers

vsetvli x1, x2, e32, m1 // VL-min(VLEN / 32, x2); SEW~32; LMUL-~1; x1-VL
vadd.vv v3, vi, v2 /] v3[e] « vi[e] + v2[e], forall 0 < e < VL

= Add two vectors of doubles (float64)

vsetvli x1, x2, e64, m1 // VL-min(VLEN / 64, x2); SEW—64; LMUL-1; x1-VL
vfadd.vv v3, vi1, v2 /] v3[e] « vi[e] + v2[e], forall 0 < e < VL

= Add two vectors of doubles (float64) but using LMUL=2
(can only use even-numbered registers)

vsetvli x1, x2, e64, m2 // VLemin((2*VLEN) / 64, x2); SEW—64; LMUL—1; x1 VL
vfadd.vv v4, v0, v2 /] v{4,5}[e] — v{0,1}[e] + v{2,3}[e],

Mapping “e” to v{2*i} or v{2*i+1} is
< <
// forall 0 < e VL implementation defined by SLEN



This is all very nice but how does it compare to
other state-of-the-art vector ISAs?

Is the vector register
size defined by the
architecture?

Masking?

Vector length?

Intel AVX-512

Yes. 512 bit

Yes. 8 mask
registers

No

Arm SVE

No. From 128 bit to
2048 bit (multiples of
128)

Yes. 16 predicate
registers

No

NEC SX-Aurora
TSUBASA

Yes. Current
generation is 16384
bits

Yes. 16 vector mask
registers

Yes
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RISC-V
V-extension

No. As long as ELEN
<VLEN (both power
of two)

Yes. Only v0 as an
implicit operand if the
instruction is masked

Yes

This table is by no means meant to be exhaustive, there are other important differences like the set of data
types supported by the ISA (e.g. fixed floating types, complex, polynomials, saturated arithmetic, etc).
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The EPI vector accelerator

Because our context is HPC, our EPI vector accelerator is currently aiming at

= ELEN =64 bit (i.e. up to vectors of int64 or double)
VLEN =16384 (i.e. a vector can hold 256 elements of int64 / doubles or 512 elements of int32 /
floats, etc)
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How to use the V-extension
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How to use the V-extension in our programs

Ok so, how do we use the V-extension?

= Assembler.
m Always a valid option but not the most pleasant &
= C/C++ builtins
m  Low-level mapping to the instructions but allows embedding it into an existing C/C++ codebase
m  Allows relatively quick experimentation
= #pragma omp simd (aka “Semi automated vectorization”)
m Relies on vectorization capabilities of the compiler
m  Usually works but gets complicated if the code calls functions
m  Also useable in Fortran
= Autovectorization
= All bets are off @

Processor
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Work we did in EPI to enable the V-extension in
our compiler

In EPI we want to ultimately be able to offload (via #pragma omp target) code that uses the V-extension
(ideally using #pragma omp simd).

We took LLVM/clang and we had to do a few things

Add support for assembly/disassembly the new V-extension instructions
m Devise a code generation mechanism

m A vector operation of a specific data-type can bee seen as an (optional) “set VL, SEW” followed by the actual
instruction

= Provide a mechanism to target that code generation mechanism from C/C++
m  Target specific builtins

= Adapted LLVM’s Loop Vectorizer to generate “something” that uses V-extension instructions
m  More on this later

Kudos to Arm folks for setting the foundation stone in LLVM on which this work was possible.
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The first example: a vector addition
Let’s now walk-through an extremely simple example of how we can use the V-extension.
Consider a vector addition:

void add_ref(long N, double *restrict c, double xrestrict a,
double *restrict b) {
for (long i = 0; i < N; i++)
cli] = a[i] + b[i];

Ideally the compiler should be able to autovectorize this. But let’s see how we can do that manually
using builtins.
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Vector addition with builtins (1)

void add_vec(long N, double *restrict c, double xrestrict a,
double *restrict b) {

“Requested” Single-element
long gvl; // “Granted” vector length vector length Width (SEW)
for (long i = 0; 1 < N;) {
A . - ; ) Length multiplier
gvl = _ builtin_epi_vsetvl(N - i,  epi eb4, __epi_ml);y gaJﬁUL)p

__epil_1xf64 va

__builtin_epi_vload_1xf64(&a[i]l, gvl);
__epi_1xfé64 vb = _ _builtin_epi_vload_1xf64(&b[i], gvl);
__epi_1xfe4 vc = __builtin_epi_vfadd_ixfé64(va, vb, gvl);
__builtin_epi_vstore_1xf64(&c[i], vc, gvl);

1 += gvl;

} Did you notice?
No epilog/tail loop for the remaining elements!
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Vector addition with builtins (2)

What we get from the compiler

add_vec: # @add_vec
addi a4, zero, 1
blt a0, a4, .LBB1_ 3
mv a4, zero

.LBB1_2: # %for.body
sub a5, a0, a4
vsetvli a6, a5, e64, ml
slli a7, a4, 3

add as, a2, a7 Note: This code is not necessarily the

vie.v v0, (a5) best and there may be room for
add a5, a3, a7 improvement here (WIP)
vie.v vi, (a5)

vfadd.vv vo, vo, vi

add a5, a1, a7
add a4, a4, ab
vse.v v0, (a5)
blt a4, a0, .LBB1_ 2
.LBB1_3: # %for.end
ret
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Beyond builtins: where are we now (1)

Builtins are useful for exploration and porting codes but they may be laborious to use in a codebase.

We would want the compiler to help us!

We took LLVM and made the necessary changes so the Loop Vectorizer could vectorize loops using the
V-extension.

But we faced a few issues that are preventing us at the moment to fully exploit the V-extension.

= LLVM intermediate representation (IR) currently lacks the ability to represent masking other than in

loads and stores
= LLVMIR cannot represent at all the concept of vector length

There is a proposal called Vector Predication now in discussion in LLVM to be able to express such
concepts in the IR. The goal of the proposal is to benefit both ISAs that rely mainly on masking (AVX-512,
SVE) and ISAs that rely on the vector length (Aurora SX, RISC-V V-extension).
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Beyond builtins: where are we now (2)

Because of the current limitations in LLVM we can only do

= Emit two loops: a first one vectorized but working with the whole register (i.e. VL set to VLEN/SEW)
and a tail/loop that is scalar @D
= Emit a single loop that relies on masking. Masking however is only used for load/store operations. 2

vsetvli t@, zero, e64, ml # VLMAX .LBBO_8: # scalar tail ().LBB@_Z: # Single loop, VLMAX uses masks
slli t1, to, 3 sub a0, ao, a7 Vmv.v.X vo, t0
.ee slli a4, a7, 3 vadd.vv v, vO, v2
.LBB0O_6: # vector loop (whole register) add a1, al, a4 vmsleu.vv vo, vo, vi
add a5, a2, a4 add a3, a3, a4 add a4, al, ab
vie.v vo, (a5) add a2, a2, a4 vie.v v3, (a4), vo.t
add ab, a3, a4 .LBB@_9: add a4, a2, ab
vie.v v1, (a5) fld fto, 0(a2) vie.v v4, (a4), vo.t
vfadd.vv vo, vO, vl fld ft1, 0(a3) vfadd.vv v3, v3, v4 # not great
add a5, al, a4 fadd.d fto, fto, ft1 add a4, a0, ab
vse.v v0, (a5) fsd fto, 0(al) vse.v v3, (a4), vo.t
add t2, t2, tO addi a0, a0, -1 add t0, t0, ab
add a4k, a4, ti addi a1, al, 8 add a5, a5, a3
bne t2, a7, .LBBO_6 addi a3, a3, 8 bne t0, a7, .LBBO_2
beqz a6, .function-end addi a2, a2, 8
# fall-through on to .LBBO_8 bnez a0, .LBB0_9 20
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Other areas where the V-extension can be used

Exploration of these is still work in progress

= (Whole) Function Vectorization
m  This is useful for functions that are called from vectorized code (e.g. #pragma omp simd)

= Porting vector math libraries (like SLEEF) to V-extension using builtins

m Superword-level parallelism (SLP) N°Ste: V\{Ea'lefﬁoa ;"’ay to
ensure a

elements will always be

float * _ restrict sx, float * _ restrict sx,
float sa) { P

void saxpy4_ref(float * _ restrict sy, void saxpy4_vec(float * __restrict sy, granted.
float sa) { »

sx[0] += sa*sy[0]; _epi_2xf32 vx = __builtin_epi_vload_2xf32(sx, 4);

sx[1] += saxsy[1]; _epi_2xf32 vy = _ builtin_epi_vload_2xf32(sx, 4);

sx[2] += saxsy[2]; vy = _ builtin_epi_vfmul_2xf32(vy,

sx[3] += saxsy[3]; _ _builtin_epi_vbroadcast_2xf32(sa, &), 4);
} vx = _ builtin_epi_vfadd_2xf32(vx, vy, 4);

__builtin_epi_vstore_2xf32(sx, vx, 4);

}

21
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EPI tools for leveraging the V-extension

22
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No silicon yet: what can we do?

Ok so we can use V-extension features via the builtins (and somehow via the vectorizer). But we do not
have any hardware yet.

How can we assess whether the program is correct and whether we are making the most of the
accelerator?

Unsurprisingly the answer is emulation.

23
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Functional emulator: vehave

Vehave is a functional emulator, similar in spirit to the Arm Instruction Emulator for SVE, which traps on
an illegal instruction, decodes it (using LLVM libraries) and emulates it.

This way it allows us to run applications using V-extension instructions in a hardware running RISC-V
Linux (like the HiFive Unleashed) or gemu-system (and even gemu-user).

It is not meant to be fast but allows us to validate that the compiler generates code that makes sense.

We also added tracing features to the emulator so the vector code can be analyzed, more on this later.

24



Compiler explorer

We adapted Compiler Explorer (

under vehave.
This is mostly useful to showcase the builtins and evaluate the code generation of small snippets.

&

QAR ([

Csource #1 X

A-

@Save/load +Addnew..~ ¥ Vim

#include <stdio.h>
#include <math.h>

#define e 1e-9

void add_ref(long N, double *c, double *a, double *b) {
ong i;
#pragna clang loop vectorize(disable) interleave(disable)
for (i=0; i <N; i++)
c[i] = a[i] + b[i];

void add_vec(long N, double *c, double *a, double *b) {
Long i;
for (i=0; i<N;) {
long gvl = _ builtin_epi_vsetvi(N - i, _epi_e64, _epi m1);
__epi_1xf64 va = _ builtin_epi_vload_ixf64(ga[i], gvl);
__epi_1xf64 vb = _ builtin_epi_vload_1xf64(&b[i], gvl);
epi_ixf64 vc = _builtin_epi_vfadd_ixf64(va, vb, gul);
mulun _epi_vstore_1xf64(&c[i], vc, gvl);

int main|
double a[1624];
double b[1624];

double result_ref[1024];
double result_vec[1024];

#oragns clang lnnp vectorize(disable) interleave(disable)
< 1024; {

add_ref(1024, result_ref, a, b);
add_vec(1024, result_vec, a, b);

#oraama clana looo vectorize(disable) interleave(disable)
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) to use our compiler and execute programs

EPI (Developmen) (Edor #1, Compler #1)C X
EPI (Development) ¥ | @ -02

A~ 01010 O/sott BIX: Olbf Btet B/ O\s+ @intel

+Addnew...~ % Addtool...

# Badd_ref
aa, zero, 1
ae, a4, .LBBO_2
# %for .body
fto, o(a2)
ft1, o(a3)
fto, fto, ft1
fte, o(al)
a0, a0, -1
a1, a1, 8
a3, a3, 8
a2, a2, 8
13 a0, .1B80_1
14 .LBBO_2: # %for .end
15 t
16 add_vec: £ Badd_vec
17 addi a4, zero, 1
18 blt a0, a4, .LBBL3
19 v a4, zero
20 BB 2: # %for .body
21 sub a5, a0, a4
22 vsetvli a6, a5, e6d, mi
23 slli a7, a4, 3
2 add  as, a2, a7
25 vie.w e, (a5)
2 add a5, a3, a7
27 vie.v o (a5)
28 vfadd.v ve, vo, vi
29 add as, a1, a7
30 a4, a4, a6
31 ve, (as)
32 a4, a0, .LBB1 2
33 .LBB1: # %for .end

34 ret
35 .LCPI2.0:

B Demangle

BLibraries ~

quad 44 # double 1.
C B Output (0/0) EPI (Development) § -cachea (25178)

o

Other ~

[

x


http://www.godbolt.org
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FPGA co-processor

= Goal of EPIl is producing an accelerator = RTL development

= RTL needs to be verified
m  Functional verification X
m  Logical verification

Goal:
= Test the software infrastructure (e.g., run binaries including the ISA vector extension)
Methodology:

= Map into FPGA the same RTL of the EPI Vector Unit as the one of the tapeout
m Run scalar code on the HiFive Unleashed board

m Offload vector instructions to the FPGA
Ethernet FPGA
link (Vector instr.
= running on
RTL of the
Vector Unit)

26
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FPGA co-processor

Advantages

Fast prototyping = We can easily test new versions of the RTL in “little” time

Local verification = We can check that the Vector Unit is doing what is supposed to do
Resource monitoring = We can control FPGA resource utilization and timing

Software enablement = We can experiment with compiler and emulator

Performance estimation = We can assess the performance of HPC micro-kernels

Disadvantages Ethernet FPGA
= Slow execution time link ‘ (Vector instr.
(but always faster than pure software emulation) ] g{.‘["g}?tﬁg
= It needs vector instructions to be actually Vector Unit)
Supported by the RTL of the Vector Unit

= Tricky handling of memory accesses

27
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Tracing of vector code emulation
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While emulating vector code

— . . .
we collect several metrics into .trace files: __J Binary incl. vector instr.

m Type of instruction

= Program counter value

m Registers addresses (source, destination)
= Memory addresses

trace files are converted into .prv files
and explored with Paraver which allows to easily detect:

m Aggregated metrics
m Global patterns
= Microscopic behaviour

TN
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Conclusions

= EPI develops the first RISC-V based accelerator targeting HPC leveraging the V-extension

m  RTL design of a Vector Unit

| LLVM compiler support for the V-extension Evaluate relevant
P . HPC kernels

= While RTL is becoming actual hardware,
EPI develops tools for boosting

the co-design cycle
Adapt system

Provide insights
software

u Compiler explorer to architects

m  Emulator of V-instructions (Vehave)

m Contactus

m  Roger Ferrer Modify RTL
m  Filippo Mantovani accordingly

30
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