EUROPEAN PROCESSOR INITIATIVE: FIRST STEPS TOWARDS A MADE-IN-EUROPE HIGH-PERFORMANCE MICROPROCESSOR

SCIENTIFIC DAY IRT ST-EXUPÉRY & GDR SOC2: RISC-V FOR CRITICAL EMBEDDED SYSTEMS

JUSSIEU CAMPUS, PARIS, FRANCE

3 OCTOBER 2019

DENIS DUTOIT CEA

AGENDA

- HPC challenges and associated architecture evolution
- European Processor Initiative (EPI):
 - General purpose Processor (GPP)
 - Accelerator
 - Automotive
- EPI Fabless Company
- Conclusion

HPC CHALLENGES AND ASSOCIATED ARCHITECTURE EVOLUTION

HIGH PERFORMANCE COMPUTING EVOLUTION

New drivers	Requirements	Solutions
New workloads	More computing performance (Ops per second), also for simple operations (FP16, FP8, INT). Energy efficiency (Ops per Watt).	Heterogeneity: Generic processing + accelerators Low power design
Massive volume of data	Increased Bytes per Flops. High bandwidth/low latency access to all data.	High Bandwidth Memories and 2.5D integration

- Starting from high performance compute only, HPC evolves towards:
 - New workloads
 - Massive volume of data

➡ 10x energy efficiency improvement every 4 years

TERA1000 - CEA

RACE TO EXASCALE

- CPU architecture choice:
 - Japan approach: Arm/SVE (homogeneous)
 - China approach: Custom many-cores (homogeneous)
 - US approach: x86 + GPU (heterogeneous)

K / RIKEN, 2011 SPARC64 VIIIfx 11.28 petaflops (peak) 10.51 petaflops	Japan		\longrightarrow	(2020-2021) Fugaku / RIKEN A64FX (Armv8.2+SVE) >0.5 exaflops	
China	Sunway TaihuLight /NRC SW26010 125.43 petaflops (peak)	$\stackrel{(PC)}{\longrightarrow} \xrightarrow{NRCPC E} SW2601$	xa-prototype 0 based	> (?) ? ?	
Tianhe-2 /NUD Intel Xeon + KN 33.86 petaflops	$C \longrightarrow $ Intel Xe	-2a /NUDT, 2018 eon + Matrix-2000 petaflops (peak)		(2020-2021) Tianhe-3 / NUDT Matrix-3000 >1.0 exaflops (peak)	homogeneous
		-	xa-prototype PU + DCU	→ (?) Hygon CF ?	PU + DCU
US		IBM P9 -	Vidia GPU ps (peak)	(2021) Aurora / ANL Intel Xeon + X >1.0 exaflops (2021) Frontier / AMD CPU ~1.5 exaf	(peak) / ORNL
03-10-2019				heterogeneous	s, accelerated

European Processor Initiative

21

EUROPEAN PROCESSOR INITIATIVE (EPI)

EPI - EUROPE'S AMBITION

- Design a roadmap of future European low power processors targeting
 - Extreme scale computing,
 - High performance big data,
 - Emerging applications
- FPA answering EU Horizon 2020 (FP8) ICT-42-2017 call

* FPA : Framework Partnership Agreement
* FP8 : Framework Programmes 8 for 2014-2020, succeeding FP7 (2007-2013)

EPI - MISSION

- <u>European Independence</u> in High Performance Computing Processor Technologies
 - Goal: EU ExaScale machines based on EU processor by 2023

1018

AND

- Based on a solid, long-term <u>economic model</u>
 - Go beyond the HPC market (not large enough)
 - Address the needs of European Industry \rightarrow Car manufacturing market

EPI - OUTCOMES

- High Performance General Purpose Processor for HPC (GPP)
- High-performance RISC-V based accelerator
- Computing platform for autonomous cars
- Common Platform to foster EPI roadmap (CoDesign Methodology, Platform for hardware and software, Power management, Modeling and Simulation)

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 826647 •HPC general purpose processor stream

GENC

menta

PROVe & RUC

SIPEARL

ETH zürich 🖾

Accelerator stream

Automotive platform stream

Copyright © European Processor Initiative 2019. RISC-V Scientific Day / Paris / 03-10-2019

Copyright © European Processor Initiative 2019.

GENERAL PURPOSE PROCESSOR (GPP)

EPI POSITION STATEMENT ON PROCESSOR CORE SELECTION

GPP processor chip

- To adopt Arm general-purpose CPU core with SVE in the first EPI chip for pre-ExaScale level generic processing
- To develop RISC-V based acceleration technologies for better GFLOPS/Watt performance
- To include MPPA (Kalray) for real-time application acceleration
- To include eFPGA (Menta) reconfigurable logic for flexibility

COMMON PLATFORM TO ENABLE EASY TO USE ACCELERATORS

European Processor Initiative

epi

OFF-CHIP INTEGRATION OF ACCELERATORS

Copyright © European Processor Initiative 2019. RISC-V Scientific Day / Paris / 03-10-2019

Copyright © European Processor Initiative 2019.

ACCELERATOR

RECALL... THE GPP AND COMMON ARCHITECTURE

Copyright $\ensuremath{\mathbb C}$ European Processor Initiative 2019. RISC-V Scientific Day / Paris / 03-10-2019

EPAC - RISC-V ACCELERATOR

- EPAC EPI Accelerator
 - VPU Vector Processing Unit
 - STX Stencil/Tensor accelerator
 - VRP VaRiable Precision co-processor

AUTOMOTIVE

EPI AUTOMOTIVE

- Autonomous driving systems
- Connected mobility
- EPI: A powerful data fusion platform the automotive embedded HPC platform
- EPI heterogeneous multicore architecture can provide enough performance and low power consumption in parallel

AUTOMOTIVE DOMAIN

- High-performance needed but... within specific domain requirements
 - Reliability
 - Harsh operating conditions due to Electro-Magnetic Interference (EMI), humidity, vibration, etc.
 - Safety
 - Development process subject to functional safety standards
 - Design
 - Verification and validation
 - Security
 - Connectivity
 - Updates

THE EPI APPROACH: EMBEDDED HPC ARCHITECTURE

EPIFABLESS COMPANY

EPI FABLESS COMPANY: SIPEARL

- EPI's Fabless company: SIPEARL
 - licence of IPs from the partners
 - develop own IPs around it
 - licence the missing components from the market
 - generate revenue from both the HPC, IA, server and eHPC markets
 - integrate, market, support & sales the chip
 - work on the next generations

European Processor Initiative

epi

WE ACCELERATE ACCELERATORS !!!!

SIPEARL SAS 78600 Maisons-Laffitte France

Contact Philippe NOTTON philippe.notton@sipearl.com +33180835490

RCS Versailles Siren 851 434 365

R&D in Paris / Grenoble / Sophia Antipolis

CONCLUSION

European Processor Initiative

CONCLUSION

- HPC is crucial to resolve societal challenges and preserve European competitiveness
- The chip design effort must continue for the EU's sovereignty and competitiveness
- EPI should create a processor ecosystem covering HPC, autonomous connected vehicles, servers and cloud

n <u>European Processor Initiative</u>

THANK YOU FOR YOUR ATTENTION

