- IEEE ; A
. rorpen | INSTRUMENTATION \
processor | & MEASUREMENT
VLAV vV SOEIETY®
EpI

IEEE IMS DL.:

Instrumentation and Measurement
and Autonomous Driving

A

Prof. Ing. Sergio Saponara
Tel. +39 050 2217 602, Fax. +39 050 2217522

sergio.saponara@unipi.it

Outline
(EPI related slides, 20/80)

Societal, economical, technical challenges of autonomous &
connected vehicles and intelligent transport systems (ITS)
Remote sensing (Radar, Lidar) in smart vehicle & ITS
Sensing technology for navigation

eHPC (embedded High Performance Computing) needs of
autonomous and connected cars — the H2020 European
Processor Initiative (EPI) project

Arithmetic accuracy for DNN acceleration (Posits in EPI)
Conclusions

European Processor Initiative

Enabling TEchnologies for smArt vehicles and Mobility (EPI 120 M€ project in 5 years)

European
Processor
Initiative

\/ Embedded
HPC
Vv2Xx

Copyright © European Processor Initiative 2019.

ACES Vehicles & Mobility

Autonomous Connected Electrified Shared

Servers Al accelerators

& Cloud

AeroSpace

Automotive

Industry 4.0
& Robotics

European
Core - g
nitiative
HPC Drivers epl
|

sovereignty

Copyright © European Processor Initiative 2019.

EPI partners & HW/SW eco-system

e

Bull =orsma |€)Jluich ~ |aM, § <e- - (ArME@E=-
: atos technologies : ‘_EﬂFt =
E e ﬁ s CFE‘ (Dearry . Prngrar.nmin.g tools &
| Eull HPC : Co-aesi g Automotive Libraries:
| Environment | explorationgspace ki EEARIGEC with
. for the Reference | _' . s::]f;:::: OPEFHF%?EETS&PI;
: Flatiorm E (e’ GROMACSii I:' KALRAY h:;'d OPEI‘IBI’_AS, --,-
,El:é!':m Lustre E O OpenVFOAM@ il'lﬁi'lEDﬂ -3 Elektrobit m .hlri”‘?“.'“ Bl-u—l-
Eeculﬂty,I - o @ eile ‘ redhat “Suse (e, CEORTH
ow-level software,
power managemenﬁ e “""‘P;“;w%wn a rm rsRisc - Linux Operating System Bull
Z Fraunhofer (@'ﬁm‘" .,,' 2 @ il EPI | EPI Reference Bull E4
-Blll.l. O xaray S5 Processor | Hardware uTen
mentq Usivessii s Pisa atos tE‘ChF'IL}ECIQEEE ENGlNEEﬂING

BMW
GROUP

) kALrRAY 9

EPI
27 PARTNERS

e - AWOS Ginen @ES-

JULICH Eemidynamic® @{Fggggo ZFraunhofer
ITWM
:: @,) E4 CINECA
UNIVERS;;-\ DI P1sA F=a E&'.‘L'EEJ.SE
#GENCI ®FORTH Ly; ex<roru
@[ISIPEARL -/
ETHziri Elektrobit P>
zirich [l menta

EPI Roadmap & Architecture

Pan European Research
Platform for HPC and Al

2021

Rhea Family - Genl GPP

EPI Common Platform
ARM & RISC-V
External IPs

HPC System PreExascale
Automotive PoC

.

2021-2022

2022-2023

Cronos Family - Gen2 GPP

EPI Common Platform
ARM & RISC-V

HPC System Exascale
Automotive CPU

Gen3 GPP Family

European
Processor

Initiative

epl

2024-...

EPAC - EPI Accelerator @

. ° KALRAY
= MPPA - Multi-Purpose Processing Array
D2D links o)
@vol * cFPGA - embedded FPGA 4
__ - menta
: = Cryptographic ASIC (EU Sovereignty)

DDR
memories

EPI chip in 6 nm technology

~ ISIPE/ARL

EPI enables AUTOSAR adaptive platform

{ AUTOSAR Adaptive Platform

Multi Sensor Situative Behavior Arbitration Motion Manager

Data Fusion

<A,

Trajectory control

Positioning

analysis of ;
: ; planning

3
/|

Longitudinal control

Object Fusion

B
| -
—
S—

Road & Lane Data

Fusion Lateral control

analysis of lannin
situation H gf the pgm

Vehicle Database

Vehicle Abstraction - Sensors

11

Function Specific Views

HMI Manager

Vehicle Abstraction - Actuators

L
®
2

DB

Safety Management

New eHPC ECU: Safe&secure MCU with high-SIL controlling EPI-like
number crunchers (multi-core 64b GPP + accelerators)

Memory needs for autonomous cars

e (g ~].5 G OF TRAFFIC PER DAY

S 3000 GB -
ATINDMILS 1 ()()() G PERDAY...EACH
weye 40,000 G o

acronr 1,000,000 GB PERDAY

Memory needs and trends for assisted driving

Non-Volatile Memories (NVM)

NVM for assisted driving scenario or safety applications

for Automotive 8
/\- 100 ' | ' 1 ' I ! 1 ' | ’ | ' 10 —
10M 10 éj
inyeichle Infotainment % 0
Embedded Systems B IM 10 E
T 1! 5 100 k 0—0 Memory size 105 3
@ B—a MCU computational power =
Code NAND Flash N 10k 10' 3
Data Storage - o
Storage memories @ 5 =
2 1k 100
I T ..] - g
: NOR Flash NOR Flash : SD cards 7, 100 10 E“
. 3 EEPROM |1 eMMC 10 10" S
| : Solid State Drives JE s AT 0 o
oo bosedete) ! Year
Parameter EEPROM NOR Flash _ NOR Flash PCM _ MEMS-based RRAM __ TAS-MRAM
Code Storage Data Storage CBRAM
Endurance 500k 10k — 100k 500k - 1IM =1M >IM 100k =M
Data Retention >10 yrs/125 °C 10yrs/125°C >10yrs/125°C 10yrs/85°C >10yrs/125°C 10yrs/85°C >10yrs/125°C
Power consumption Low Low Low High (Write) Low Low High
Read Latency 20—-50ns <20 ns <20 ns > 20 ns > 100 ns =20 ns 30— 100 ns
Cost per bit Medium/High Medium Medium Low High Low High

Outline

Societal, economical, technical challenges of autonomous &
connected vehicles and intelligent transport systems (ITS)
Remote sensing (Radar, Lidar) in smart vehicle & ITS
Sensing technology for navigation

eHPC (embedded High Performance Computing) needs of
autonomous and connected cars — the H2020 European
Processor Initiative (EPI) project

Arithmetic accuracy for DNN acceleration (Posits in EPI)
Conclusions

Motivations for alternatives to float in ML & DNN

In Automotive Applications, Machine Learning (ML) and Deep Neural
Networks (DNNs) must run in vehicle, relying on internet connection
and remote services can not be mandatory

we need both HPC on-board the vehicle, and/ore more efficient
representation of the information

The representation chosen for real numbers has a high impact on the
synthetized hardware (cores, SoC acceletarors, etc.)

Novel posit format as alternative to float (posit library developed in
Pisa: the cppPosit library)

Floating-point representation (IEEE-754) has some limitations:
The support to unnormalized numbers is tricky (needs more HW)
Too many representations wasted for Not-A-Number

Uses the same number of bits for the mantissa, both for small and
large numbers (and this is inefficient)

Computing Industry Looking for Alternatives

* Intel/Google BFLOAT16 (equivalent to a standard single-precision
floating-point value with a truncated mantissa field). Basically, they are
less precise than fp16, but with a range similar to fp32. Supported in
Google cloud TPU and TensorFlow and Intel Al processors

* Intel flexpoint (16bits size aiming at equivalent fp32 accuracy)

« NVIDIA (e.g. concurrent execution of Floating Point and Integer
Instructions in the new Turing SM; from Fp32/Fpl6and INT32 to INT8
and INT4 precision modes for inferencing workloads that can tolerate
quantization)

 Tesla FSD chip (Neural processing units use 8-bit by 8-bit integer
multiply and a 32-bit integer addition)

* Transprecision computing proposed in state of art (e.g. Greenwaves)

The Novel P

Proposed by John Gustafson in 2017

It can be viewed as a compressed floating-
point format, which deserves more
mantissa bits for low number and less for
large numbers, within a fixed-length format

No-need to use un-normalized floats (so, no
extra-hardware wasted to handle this
exception)

Only one representation wasted for Not-A-
Real (NAR)

Posit numbers use an interesting encoding
which allows, to compare two posits, to
reuse the same circuit used to compare two
integers in 2’s complement already present
in the ALU

osit Format

0123

S

4 5 6 7 8 9 10111213 14 1516 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Fraction (0...)

Regime (1..re) | Exponent (0..es)

Fig. 1. An example of Posit data type.

0

S
1

1 23 456 738

R
00010101

1 2 34 5 &

9 10 11 12 13 14 15

E
00001101

78 1011

R
(A2 NEIL L@

(=]

12 13 14 15

E
1

Fig. 2. Two examples of 16-bit Posit with 3 bits for exponent (es=3). In
the upper the numerical value is: —256 " -2 - (1 4 [1/256) (13/256 is
the value of the fraction, 1 + 13/256 is the value of the mantissa). The final
value is therefore —1.907348 x 1076 - (1 +13/256) = —2.0042 x 107°.
In the lower the numerical value is: +256 -2+ (1 4+ 0) (since the
fractional part of the mantissa is missing, we set it to zero). The final value
is therefore 216 - 24 22 1.2676506 x 103V, The second example allows to
clarify that: 1) the fractional part can be missing, ii) the exponent field can
be shorter than its maximum size (in that case the missing bits are assumed
zero: the exponent -+ comes from the reconstructed exponent field ').

The cpp-Posit Library developed in Pisa

State-Of-The-Art Posit library, developed in Pisa

Very efficient (written in C++, fully exploiting templates and several
features of the C++14 standard)

Emulates a Posit Processing Unit (PPU) using, either
— The FPU and the ALU, or
— The ALU alone (the FPU is emulated using softfloat)

Supports TABULATED POSITS (using look-up-tables, for posit having
total length <= 14 bit): this speedup the library, a mandatory feature
to train DNNs

Next goals (ongoing activities):
— Exact Dot Product: main goal 1
— High Level Synthesis in FPGA/ SoC Accelerator: main goal 2

Are Posits Really Better Than Floats?

Yes!

UNIPI has performed comparisons on both Machine Learning (K-NN)
and Deep Neural Networks for Image Classification (we extended the
tiny-DNN C++ library)

We have found that, on a K-NN application (see next slide):
— a 16-bit posit is as accurate as a 32-bit float (single precision)
— an 8-bit posit is much better than a 16-bit float (half precision).
On an DNN used for image classification:

— a 10-bit posit is as accurate as a 32-bit float (>98.5% of correct
classification)

— a 8-bit posit is able to provide a very high accuracy (>97%)

Both cppPosit-based K-NN and tiny-DNN libraries have been selected as
WP1 benchmark applications (they support both floats and posits)

Precision %

The Cpp-Posit based K-NN Library

— The K-NN algorithm searches for the K points in a dataset that are the closest to a

given query point

A

— |t can be computed in an exact or approximated manner.

Y-Axis

 Implemented the approximated NN, using floats and posits

 Compared the two formats on two standard benchmarks:
Fashion Mnist 784 Euclidean & SIFT-128-Euclidean

h

*

|
\
Y
A"

A
~

:, —". 3 Class B
* o XL

i s

: *: *

New example
to classify Class A

"\\K=3 ‘ ,,f ;I‘
Mg ‘,;f .‘

K=7 R4

Y

-

100 4

60 - i

40 \\\ Posit8 / 3

floatl6.half \
flaot32.native \
posit32_2.cpp \
20 A positl0_1ni.cpp X

posit8_1ni.cpp \
posit8_1.cpp \
positl6_1.cpp N\
positle_2.cpp

) ~
——~ positl2_1ni.cpp \ =38 18 E \ B

positle_3.cpp A a | B -1 . 1 - 1T __—"T"""""/"—F/ "™

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

v

X-Axis

The scaling factor re-
scales the dynamic
range of the original

dataset, without
affecting relative
dynamic.
Scale 1.0: original
dataset. For a given
scaling factor, the
higher the precision,
the better

Experiments with Deep-Neural Networks

We integrated the cppPosit library with tiny-DNN open source C++ lib
A positl2 DNN reaches the same accuracy of the float32 counterpart
To speedup the learning phase, we tabulated the posits (LUT)
Acceptable performance can even be attained using an 8-bit

Data Type (tot_bits, exp_bits) Accuracy on 10,000 images

Float32 08,88% Type Accuracy
Posit16,2 98,88% PFolsOi?:Z?O gjggz
Posit4,2 98,85% Posit14,0 | 94.0%
Posit12,2 98,66% Posit12,0 94.0%
Posit10,0 98,69% Posit10,0 94.0%
Posit8,0 97,24% Posit8,0 93.8%

feature extraction classification

/ 8
¢ 4
7 0
I
2¢
X3
7o
q 9
¢ 3
2 3

MNIST dataset: 10 classes, 10,000 samples o Similar results obtained on CIFAR10.

: o Currently investigating the ImageNet
Convolutional Neural Network dataset, using the AlexNet pre-trained network

Posit Processing Unit (PPU) vs FPU

 Lower memory footprint (on RAM, on disk)
* Higher bandwidth & lower power consumption
 More cache-friendly (due to the use of shorter data)

 More suited for vectorization (again, shorter data means more data on
registers at the same time — see ARM SVE)

A Posit Processing Unit (PPU) can be synthesised e.g. using the Vivado toolkit: the
cppPosit library allows automatic HDL code generation starting from C++ code
An alternative is a LUT tabulated implementation of a PPU, for posits with max 8/10 b

| Total bits (X) Storage type bits (b) Per-table occupation

Memory needs to store the single |° s

10 16 2MB

LUT as a function of X
(total number of bits of the Posit) —

16 16 8GB

Posits for DNN/ML: conclusions

Posits have the potential to overcome most of the float issues in Machine
Learning and DNN computing

They allow to reduce the bandwidth bottleneck problem during
read/write from/to RAM

Have beneficial effects on vectorizable applications, since data are
generally shorter
They are more cache friendly, every time a posit8 can replace a float16, a
positl6 a float32 and a posit32 a float64 (i.e., in most of the applications)
A posit library developed at UniPI (cppPosit)
Tested on K-NN and DNN benchmarks
Activity ongoing:

— Test on additional datasets/applications

— Recompile on ARM-64 SVE simulator

— Software implementation of the Exact Dot Product

— Hardware PPU by high level synthesis

Thanks for your attention

Prof. Ing. Sergio Saponara
Tel./Fax +39 050 2217602 /522

sergio.saponara@unipi.it

