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Wireless for context-aware ADAS

Wireless communications & networks (802.11.p @ 5.9 GHz,
cellular-V2X)

Vehicle to Vehicle

Venhicle to Infrastructure (Internet of Vehicles)

Vehicle to Human

Venhicle to Network and Social sensors




Complementary wireless systems for ADAS

802.11 p-based * Anti-collisions
* ADAS

,_ « Safety
& & « Queue warning
Real-time, Critical applications, Short range, Low latency

AGLTE/5G

* Infotainments
» Social sensors ﬁlllllll
* Multimedia

High data speed
Network infrastructures
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IEEE 802.11p overview
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IEEE 802.11p overview

52 subarriers

(48 Data, 4 Pilot (BPSK), 1 Null)

26 -21 -7 0 7 21 +26

802.11p OFDM PHY Parameters

BW 10 MHZ

Subcarrer Spacing 156.25 Khz (10 MHZ/64 Pt FFT)

Information Rate 3,4.5,9, 12, 18, 24, 27 Mbit/s

Modulation BPSK, QPSK, 16QAM, 64QAM

Coding Rate 1/2, 2/3, 314

| Total Subcarriers 52 (Freq Index -26 to +26)
Data Subcarriers 48
Pilot Subcarriers* 4 (-21, -7, +7, +21)
*Always BPSK - >

DC Subcarrier Null (0 subcarrier) el
One Subcarrier = 1 constellation point
1 OFDM symbol = 52 subcarriers
1 OFDM Burst = one or more OFDM symbols

“ 802.11p OFDM burst =
Preamble SIGNAL DATA OFDM Symbols
> < »>
Short | Long
frame structure
Preamble (SYNC) SIGNAL DATA or PaylLoad
(12 symbols) (1 OFDM Symbol) (Variable Number of OFDM Symbols)
[ Short Training | LongTraining | SIGNAL | Data1 | Data2 Data3 | _ .
(10 short syms) (2 Long syms) (1 symbol) | (1symbol) [ (1symbol) | (1symbol)
Short Training Seq. Long Training Seq.  SIGNAL symbol Data symbols

16 us length 16us duration 8 us duration
12 subcarriers - all 52 subcarriers always BPSK
every 4th subcarrier equal mag/phase Rate info
equal Magnitude channel estimation Length info
signal detect chan equalization
AGC Diversity Sel fine freq offset est
timing sync

coarse freq offset est.

8 us duration
1 IFFT per symbol

52 subcarriers per symbol

48 data, 4 pilots & zero Null sub.
data: same mod fmt per burst
(BPSK,QPSK,16QAM,64QAM)

pilots: BPSK only



IEEE 802.11p overview
Lmk Budget

Received Signal Power:
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Transceiver and channel model

0
Environment Power law "
PL (dy) (dB n o(dB) s
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Transceiver and channel model

[V2V Transceiver - IEEE 802.11p WLAN PHY]

DIGITAL ANALOG

Nl =
COLOR LEGEND:
Blue: Digital system blocks Orange: Analog
system/signals
Light Orange: Control system/signals Yellow: Display and graphics
Green: Radio Channel Grey: Settings

and documentation



Transceiver and channel model

Experimental measurements:

* scenarios: highway, suburban and
urban canyon

* Line of sight condition: LOS, NLOS

Results:
* PDR(%) vs distance

Parameter 802.11p
Channel 180
Center frequency (MHz) 5900
Bandwidth (MHz) 10
Data rate (Mbps) 6
Tx power (setting, dBm) 18
Tx power (measured, dBm) 10
Antenna gain (dBi) 5
Beacon frequency (Hz) 10
Beacon size (Byte) 36




POR(%)

PDR(%)

Model vs. real world comparison

Urban Scenario - QPSK 1/2 - Real world scenario vs Simulink
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PDR(%)

PDR(%)

Impact of distance and speed

Urban LOS multipath Scenario - 10 dBm TxPow - 5(x2) dBi Ant Gain - 200m
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NF [dB]

IEEE 802.11p receiver in low-cost CMOS
NF 2.43 dB, 30 mW, Gr 32 dB, 1dBOP 0.8 dBm

—Vsupply 2.5V — Vsupply 3V — Vsupply 3.5V = — =

Noise Figure (Mosfet size, Vsupply) - % L é Supply
Z Rpol C2 C3
R1 (2kOhm) = i lo_mﬁm
\ B =" WRz(szM) —{5MD
NF minimum _ﬁ L4
\ kst MA Eve  Sm—5mc
B e wili D
\ | e C1 (15 pF) éLz second
"0 100 110 120 130 140 150 first stage i ~-  stage
Size W of the Mosfet [um]
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1100
2500
| SG25H30.254SiGe 3800
3100

55nm SiGe BiCMOSO055 7900



IEEE 802.11p receiver in CMOS
Path Loss: 40 dB@ 0.5m, 100 dB@ 500 m, 120 dB@5 km
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Automotive cybersecurity: a real challenge

HACKERS REMOTELY KILL A
JEEP ON THE HIGHWAY-WITH—— =
MEINIT e e

Exposure to cyber attacks:
* Vehicle hack
* Data tampering

: : NG ACTICN Fon'y! 5u Tl
* Denial of Service m& HACKERS USE WIFI TO TAKE CONTROL OF VEHICLES nbc aﬁ}gﬂ

INTRUDERS CAN DISABLE BRAKES, STEER & KILL ENGINE J
EA s |




SW computing of crypto functions

Too slow, too power consumption

Performances data for AES-ECB-256, SHA-2 256 and ECDSA SW

implementation (Open SSL library on 4-core 64b Cortex-A53 Broadcom
MPSoC)

Number of TH 1,8 4Cores 3s
core (Mbps) (mJ/Mb) S 16
917.4 305.80 0.98 § 14
1812.8  604.27 600 0.99 S 12 2Cores 35
“ 3 3628 1209.33 1300 1.07 2 1
S 1 Core 3s
- 08
[
3 06
Number of TH (Mbps) e Y
core (mJ/Mb) E 0,4
337.9 113,01 310 2.74 g 02
3 664.9 221,63 650 2.93 e )

“ 3 1213.9 404,63 1380 3.14

Number of TH
core (0Op/s) (mJ/Op)

282.4 28.24 10.98

— 10 560 56 620 11.07
“ 10 1085 108.5 1330 12.26

Time

2 orders of magnitude in speed and 1 order of magnitude in power
improvement with HW acceleration



HW acceleration for cryptography

« Main idea: accelerate the intensive operations of cryptographic standards in
order to meet the high-performance requirements of the automotive world in
terms of latency

« Standards can be easily implemented in SW but this could not be enough in
terms of performance for the automotive world

« HW solutions may lack flexibility: a cryptographic co-processor is the best
trade off between performance, flexibility and reusability when compared to
ISE and dedicated crypto processors

« General purpose code running on the GPP while sensitive operations are
accelerated in HW

« Post- quantum security needs long key/hash e.g. AES256, SHA512
« ECC-based crypto not suited for post-quantum crypto



HW-based Root of trust

Examples from the H2020 European Processor Initiative:

* Definition of the HW and SW architecture of the Secure Element (SE) that will be the
root of a trusted chain to avoid that malicious SW runs on EPI multi-cores

* The multi-core on-chip system divided in secure zones (quadrants) each with a secure
MCU

* Focus on a secure boot sequence and on the relation between secure elements and
power manager

MCuU - DMA MEMORY
(RISC-V) subsystem

A A
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RNG SHA AES cores ECC arithmetic
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HW-based Root of trust

Examples from the H2020 European Processor Initiative:

* SE trustiness by proper HW/SW partitioning including:
— OTP/e-fuse integration,
— RNG for seed generation,
— acceleration for advanced and complex crypto functions
— programmability (e.g. RISC-V core plus DMA capability)

MCU - DMA MEMORY
(RISC-V) subsystem
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Configurable HW crypto IPs

Open SSL SW benchmark results (encryption throughput) on 4-core Armé64
V8.0 (e.g. that of S32NXP):

<1 Gbps (AES ECB 256), 400 Mbps (SHA2-256), 100 signature/verification
per second with ECDSA NIST-P521 for a power cost in the order of Watt

Orders of magnitude improvement in speed (x10) and power-efficiency
(x100) with EPI HW crypto acc

Up to 300 Gbps AES XTS encryption/decryption in 7 nm

Design of accelerator IPs for embedded cybersecurity

— AES 128/256 with configurable modes (ECB, CBC, CTR, OFB, CFB, CCM,
CMAC, GCM, XTS) compliant with NIST SP800-38A/38B/38C/38D/38E

— SHA2 and SHAS3, 256 and 512 bits compliant with FIPS-180/FIPS-202

— Configurable ECC-based public key accelerator modes (ECDSA, ECIES, ECDH,..)
and curves (NIST-P 256, 521) compliant with FIPS 186-3,...

— TRNG and CSPRNG verified vs NIST SP800-90B, SP800-22



More than just an HW IP core

Secure management policy of keys/certificates embedded in HW enabling advanced
SW services

Enforce good practice in sensitive data management at HW level

Provide mechanisms at HW level to enforce usage of cryptographic algorithm
and associated keys (Specification of a key management interface and internal
secure storage

Provide necessary robustness to detect and limit impact of SW bugs and attacks
by enforcing strict usage rules of the crypto processor interface

— need to know, data separation per usage, and state machine approaches

Help to architecture the SW for high security and safety, with the concept of SW
islands: simple and restricted functionality, by isolating the different operations

when manipulating sensitive data; limiting access to associated sensitive data to
each part

Ease the certification of the HW/SW by using concept of independent island
when dealing with the configuration of the crypto processor (locking
mechanism, CPU privilege restrictions, ...)

Crypto-processor configuration and operation management



Configurable coprocessor for HW car security

« Easy-to-integrate solution for automotive SoCs, where fast and context-
aware security approaches are required

* Flexible and adaptable interface to a GPP

« AES (Advanced Encryption Standard) based Block cipher Modes to
guarantee confidentiality, integrity... with 128/256-bit key sizes

« Compliant with US NIST standards: ECB (ElectronicCodeBook), CBC
(Chiper Block Chaining), CFB (ChiperFeedback), OFB (Output Feedback),
CTR (Counter mode encryption), CMAC (Chiper-based Message
Authentication Code), CCM (Chiper block Chaining Message authentication
code), GCM (Galois Counter Mode)

« High-Flexibility: Conditional instance of HW modes to minimize area

« Support core security functions needed for diffused security standard such
as SHE, MACSec or WAVE



Why multiple modes?

Cipher Mode Confidentiality Integrity Authenticity
v %

ECB
CBC
OFB
CFB
CTR
CMAC
GCM
CCM
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CACR e x
LCARN X %



Cybersecurity IP core architecture
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Cybersecurity HW/SW architecture
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Complexity Results (ZynQ 7000 FPGA

SLICE LUTS CRFLEX @ 125MHZ
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ECU and sensor DSP computing

AVERAGE ECUs PER CAR
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ECU and sensor DSP computing

System Assist _
i iti ACC
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State-of-art is 32b MCU with high-SIL Increase in system but

functionalities towards autonomous driving

will require multi-core platforms with up to TOPS capability



ECU and AUTOSAR
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will require multi-core platforms with up to TOPS capability



Memory needs and trends for assisted driving

Non-Volatile Memories (NVM)

NVM for assisted driving scenario or safety applications

for Automotive
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Power consumption Low Low Low High (Write) Low Low High
Read Latency 20-50 ns <20 ns <20 ns =20 ns > 100 ns > 20 ns 50— 100 ns
Cost per bit Medium/High Medium Medium Low High Low High



Memory needs for autonomous cars

INTERNET U%‘E’R "'1-5 GB OF TRAFFIC PER DAY TECHNICAL
DATA
SMART
3,000 GB PerDay

HOSPITAL
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ATONDMOLS 4 ()()() GB PERDAY... EXCH CROWDSOURCED

-_—
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noony 1,000,000 GB Per oaY




European Processor Initiative

Enabling TEchnologies for smArt vehicles and Mobility (EPI 120 M€ project in 5 years)

- Embedded

HPC

Copyright © European Processor Initiative 2019.
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ACES Vehicles & Mobility

Autonomous Connected Electrified Shared

Artificial Intelligence
accelerators

Servers
& Cloud

AeroSpace

Automotive

Industry 4.0
Core Safety & Robotics

HPC Drivers Critical

sovereignty



Pan European Research
Platform for HPC and Al

Rhea Family - Genl GPP

EPI Common Platform
ARM & RISC-V
External IPs

HPC System PreExascale
Automotive PoC

2022-2023

.

2021-2022

Cronos Family - Gen2 GPP

EPI Common Platform

ARM & RISC-V

HPC System Exascale

Automotive CPU

Gen3 GPP Family

2024-...

HBM
memories

Roadmap &
ArchitEcture

MPPA

D20 links
to adjacent chiplets

= MPPA - Multi-Purpose
Processing Array

= eFPGA - embedded FPGA
= EPAC - EPI Accelerator
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Motivations

In Automotive Applications, Machine Learning (ML) and Deep
Neural Networks (DNNs) must run in vehicle, without relying on
internet connection and remote services

Thus we need both a high computing power onboard the vehichle,
and/ore more efficient representation of the information

The representation chosen for real numbers has a high impact on
the synthetized hardware (cores, SoC acceletarors, etc.)

In this work we will review the state-of-the-art of representation for
real numbers

Then we will present the novel posit format
Then a posit library developed in Pisa: the cppPosit library

Then its performance on a ML application (K-NN) and on DNN-
based image classification

Finally we will discuss possible extensions of the posit library and its
high level synthesis



Alternative Representation For Real
Numbers

* The floating-point representation (IEEE standard n. 754 of
1985, updated in 2008) has some limitations:

— The support to unnormalized numbers is tricky (requires
more hardware)

— To many representations wasted for Not-A-Number (again,
requires more hardware)

— Uses the same number of bits for the mantissa, both for
small and large numbers (and this is inefficient)



Computing Industry Is Looking for
Alternatives Too

Intel/Google BFLOAT16 (equivalent to a standard single-precision
floating-point value with a truncated mantissa field). Basically, they
are less precise than fpl16, but with a range similar to fp32.
Supported in Google cloud TPU and TensorFlow and Intel Al
processors

Intel flexpoint (16bits size aiming at equivalent fp32 accuracy)

NVIDIA (e.g. concurrent execution of Floating Point and Integer
Instructions in the new Turing SM; from Fp32/Fpl6and INT32 to
INT8 and INT4 precision modes for inferencing workloads that can
tolerate quantization)

Tesla FSD chip (Neural processing units use 8-bit by 8-bit integer
multiply and a 32-bit integer addition)

Transprecision computing proposed in state of art (e.g.
Greenwaves, IBM,..)



The Novel Posit Format

Proposed by John Gustafson in 2017

It can be viewed as a compressed floating-point format, which deserves more
mantissa bits for low number and less for large numbers (within a fixed-length
format)

No-need to use un-normalized floats (so, no extra-hardware wasted to handle
this exception)
Only one representation wasted for Not-A-Real (NAR)

Posit numbers use an interesting encoding which allows, to compare two posits,
to reuse the same circuit used to compare two integers in 2’s complement
already present in the ALU




The Novel Posit Format

Proposed by John Gustafson in 2017

It can be viewed as a compressed
floating-point format, which deserves
more mantissa bits for low number and
less for large numbers (within a fixed-
length format)

No-need to use un-normalized floats (so,
no extra-hardware wasted to handle this
exception)

Only one representation wasted for Not-
A-Real (NAR)

Posit numbers use an interesting
encoding which allows, to compare two
posits, to reuse the same circuit used to
compare two integers in 2’s complement
already present in the ALU

0123456728 91011121314 1516 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Fraction (0...)

S| Regime (1..re) | Exponent (0..es)

Fig. 1. An example of Posit data type.

012345678 9101112131415

S R | E B
1HOOO 10100001101

=)

) 1 2 3 45 6 7 8 9101112131415

S R B
Ol1111111111110]1

Fig. 2. Two examples of 16-bit Posit with 3 bits for exponent (es=3). In
the upper the numerical value is: —256 " -2 - (1 + [1/256) (13/256 is
the value of the fraction, 1 + 13/256 is the value of the mantissa). The final
value is therefore —1.907348 x 1076 (1+13/256) = —2.0042 x 1076,
In the lower the numerical value is: +256 '~ -2 - (1 4 0) (since the
fractional part of the mantissa is missing, we set it to zero). The final value
is therefore 216 . 2% = 1.2676506 x 103Y. The second example allows to
clarify that: i) the fractional part can be missing, ii) the exponent field can
be shorter than its maximum size (in that case the missing bits are assumed
zero: the exponent | comes from the reconstructed exponent field [10).



The cpp-Posit Library developed in Pisa

State-Of-The-Art Posit library, developed in Pisa

Very efficient (written in C++, fully exploiting templates and several
features of the C++14 standard)

Emulates a Posit Processing Unit (PPU) using, either
— The FPU and the ALU, or
— The ALU alone (the FPU is emulated using softfloat)

Supports TABULATED POSITS (using look-up-tables, for posit having
total length <= 14 bit): this speedup the library, a mandatory feature
to train DNNs

Next goals (ongoing activities):
— Exact Dot Product (see next slides): main goal 1
— High Level Synthesis in FPGA/ SoC Accelerator: main goal 2



Are Posits Really Better Than Floats?

Yes!

UNIPI has performed comparisons on both Machine Learning (K-NN)
and Deep Neural Networks for Image Classification (we extended the
tiny-DNN C++ library)

We have found that, on a K-NN application (see next slide):

— a 16-bit posit is as accurate as a 32-bit float (single precision)

— an 8-bit posit is much better than a 16-bit float (half precision).
On an DNN used for image classification:

— a 10-bit posit is as accurate as a 32-bit float (>98.5% of correct
classification)

— a 8-bit posit is able to provide a very high accuracy (>97%)

Both cppPosit-based K-NN and tiny-DNN libraries have been selected as
WP1 benchmark applications (they support both floats and posits)



The Cpp-Posit based K-NN Library

— The K-NN algorithm searches for the K points in a dataset that are

the closest
to a given query point.

It can be computed in an exact or approxima
We implemented the approximated NI
and poits
We have compared the two formats or
benchmarks:

— Fashion Mnist 784 Euclidean

http://ann-benchmarks.com/fashion-mnist
euclidean 10 euclidean.html

— SIFT-128-Euclidean

http://ann-benchmarks.com/sift-128-
euclidean 10 euclidean.html
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Precision %

Comparing Posits and Floats on K-NN

100 1

80 \

60

40

- floatl6.half
flaot32.native
posit32_2.cpp

20 4 —— positl0o_1ni.cpp

— == positl2_1ni.cpp

—-= posit8_1lni.cpp

- posit8_l.cpp

——— positl6_1l.cpp

—~—- positl6_2.cpp

01 positlé_3.cpp

T T
0.0 0.1

0.5 0.6 0.7 0.8 0.9 1.0
Scaling

The scaling factor is used to re-scale the dynamic range
of the original dataset, without affecting the relative dynamic.
Scale 1.0: original dataset. For a given scaling factor, the higher the precision, the better




Experiments with Deep-Neural Networks

We started from the open source C++ DNN library tiny-DNN
We integrated the cppPosit library with tiny-DNN

We have been able to show that a posit12 DNN reaches the
same accuracy of the float32 counterpart

To speedup the learning phase, we tabulated the posits (LUT,
Look-Up Table approach)

Acceptable performance can even be attained using an 8-bit



DNNs for DIGIT Recognition within the
UniPIl Extended Tiny-DNN Library

MNIST dataset: 10 classes, 10,000 samples

Convolutional Neural Network
Data Type (tot_bits, exp_ bits) Accuracy on 10,000 images
Float32 98,88%

Posit16,2 98,88%
Posit14,2 98,85%
Posit12,2 98,66%
Posit10,0 98,69%
Posit8,0 97,24%

o Similar results obtained on CIFAR10.
o Currently investigating the ImageNet

dataset, using the AlexNet pre-trained network
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Experiments with Deep-Neural Networks

We started from the open source C++ DNN library tiny-DNN
We integrated the cppPosit library with tiny-DNN

We have been able to show that a posit10 DNN reaches the same
accuracy of the float32 counterpart

Currently cppPosit library emulates posits using
— either the FPU and ALU, or
— the ALU only

What is needed is a Posit Processing Unit (PPU) implemented in
hardware (main goal 1)

At the moment we have been able to speed-up the neural network
learning phase by using tabulated posits (look-up table approach).
This is suitable only for Posit up to 14 bits. Posit16 and Posit32 must
be provided in hardware: PPU16 and PPU32



Advantages of Posits vs Floats

Lower memory footprint (on RAM, on disk)

Higher bandwidth

Lower power consuption

More cache-friendly (due to the use of shorter data)

More suited for vectorization (again, shorter data means more
data on registers at the same time — see ARM SVE)



Final Goal: High Level Synthesis of the
PPU

Final Goal is the High Level Synthesis of the PPU in FPGA/SoC Accelerator,
starting from our cppPosit Library.

A Posit Processing Unit (PPU) can automatically synthesised e.g. using the
Vivado toolkit.

The cppPosit library allows the automatic VHDL code generation starting from
C++ source code.

An alternative is a LUT-based tabulated implementation of a PPU, particulalry
for posits with max 8 or 10 bits

Memory need to store the single LUT as a function of X (total
number of bits of the Posit)

Total bits (X) Storage type bits (b) Per-table occupation

8 8 64KB
10 16 2MB
12 16 32MB
14 16 512MB
16 16 8GB




Challenges in Dimensioning a PPU

The total number of bit must be carefully decided. It is,
of course, application dependent.

The maximum number of bits for the exponent must
be decided too.

Probably, we should implement in hardware thel6bit
PPU (to cover from float12 to float 32) and the 32 bit
PPU (to cover floats > 32bit). We expect that a 32bit
PPU is equivalent to a 64 bit float.

The 8bit, 10 bit and 12 bit PPU dont’ need to be
implemented in hardware, since the use of LUT is
enough in most of the applications



Possible HW Architecture TO Integrate
and Better Exploiting Posit Properties

To compare two posits, we can reuse
the same circuitry used to compare two
Integersl I'e" the ALU Unified Register File

This requires that the registers of the {vector registers)
processor are content agnostic: they can
contain, naturals, integers, posits,

addresses, at different times. Dispatcher

Instruction Stream Decoder

Execution Units

Memory Control
(Cache and Memory)



Exact Dot Product (EDP)

DNNs heavily use the dot product between two vectors (the matrix-
matrix multiplication, for instance, is a series of dot products): c = 3,
ajb,

Traditionally, the FPU does not compute the exact dot product, since it
rounds the intermidiate product a.b, before accumulating

Exact dot product techniques, also called «fused dot product», aims at
performing the rounding operation only at the end, before storing the
result of the output variable c.

The use of the EDP in DNN can further reduce the number of neeeded
bit (a posit8 can reach the same accuracy of a posit12, for instance).

Implementing in hardware a PPU supporting fused operations
between floats (in particular, the exact dot product) is challenging

It requires a lot of additional circuitery

A trade-off must be accurately chosen: we are still investigating this
issue



Conclusions

Posits have the potential to overcome most of the float issues in Machine
Learning and DNN computing

They allow to reduce the bandwidth bottleneck problem during
read/write from/to RAM

Have beneficial effects on vectorizable applications, since data are
generally shorter

They are more cache friendly, every time a posit8 can replace a float16, a
positl6 a float32 and a posit32 a float64 (i.e., in most of the applications)
A posit library developed at UniPI (cppPosit)
Tested on K-NN and DNN benchmarks
Activity ongoing:

— Test on additional datasets/applications

— Recompile on ARM-64 SVE simulator

— Software implementation of the Exact Dot Product

— Hardware PPU by high level synthesis
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On-board vehicle networking
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Intelligent Generic Sensor Interface (I-GSl)

Sensors needs signal conditioning in both analog and digital
domains for continuous compensation (bias, temperature, ...)

Smart vehicles need lots of different sensors (accelerometers,
gyroscopes, temperature., speed, gas leaks, pressure,...)

Automotive industry needs low-cost but configurable solutions

Intelligent Generic Sensor Interface



Intelligent Generic Sensor Interface (I-GSl)
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I-GSI platform & specific ICs spin-off
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Integrated Power Converters for 48 V micro/mild-
hybrid vehicles

L

Belt Motor Generator Beltless Motor Generator

12V - 48V 48V - 300V
< >< >
<10kW >10kW

In 48 V micro/mild-hybrid vehicles a integrated starter/generator
up to 10 kW, provides starting torque & low-speed torque
assistance to the downsized ICE & regenerative braking

Below 70 V schock protection is NOT needed



Integrated Power Converters for 48 V micro/mild-
hybrid vehicles

! H-bridge control for 48V
= regulation loop

48 V power bridge provides AC excitation to the electrical machine

Collaboration with
Valeo, FP7 Athenis3D



48 V power bridge in 0.18 um HVMOS

48 V Power bridge embedded
within the electrical machine
(Ron limited at about 10 mOhm)



Direct bonded copper to reduce on-resistance

—T'Et PMOS)

Wire bonding

Direct Bond Copper



Integrated current measurement
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Integrated silicon-TSV HV capacitors

~ Fraunhofer
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48 V DC/DC converter

In 48 V vehicle systems a DC/DC converter is needed for direct supply of low-
voltage loads (processors, sensor, memories)

The proposed DC/DC converter covers a gap in state of art (switched cap
inductorless converter for high voltage input and low power loads)

POWER

SWITCHING INDUCTOR-BASED

CONVERTER
SWITCHED
CAPACITORS
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LUNEAR HV-SC CONVERTER

'- ~ CONVERTER (This work)

i
INPUT VOLTAGE



48 V Switched-Cap (SC) architecture
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48 V chip layout and test PCB
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V2 line and load regulation
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V2 transient response and PSRR
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V2 radiated EMI
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Temperature tests and state-of-art review
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Low over-temperature (can
work also without cooling
system)
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V3 with capacitors stacked on top

Ceramic PCB



Advanced control techniques:
Topology reconfiguration

~ Stage  InputVoltage[V] ~ VCR  OutputVoltage [V] .
6 <Vin< 15 5 12 < Vout < 30 Effects of the control techniques
15 <Vin<29 1 15 <Vout< 29 . .
29 < Vin < 60 1/2 14.5 < Vout < 30 (topology reconfiguration and SKIP-
soL  12<Vin<30 1 12 < Vout < 30 . .
- 12 <Vin< 18 1/2 6 <Vout<9 mode on the voltage regulation in the
18 < Vin< 30 1/3 6 <Vout< 10
L Vy > 6 - 5 multi-stage DC/DC architecture)
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dBm

Advanced control techniques:
Skip Mode

More than 6 dB reduction of the EM Interference power emission thanks to
SKIP-mode. Fixed frequency, like a PWM with duty-cycle hopping
between 0.5 and 0

30 0.09 MHz Spectrum Components without

e SKIP algorithm 30 e Spectrum Components with
20| ?32;2'.::&“ 16.531 dBm SKIP algorithm
/ 20 / 0.27 MHz
7.725 dBm
10 10 /
0 g o
o
-10 -10
-20 -20
-30 -30
-40 -40,
-50 -50.
-70 -70L

0.1 ' 0.3 0.9
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05, ;
f MHz)>



Advanced control techniques:
Switching frequency spreading

“fmax=fsw*(1 + d)

Center Spreading
=
2
g P fsw1
o
2
[T
fmin=fsw*(1 - 5) —
<«—— Tdither=1/fdither —_—

Extra spectral attenuation (dB)=10*log[(fsy*0)/( prrezer’M)]



Advanced control techniques:
Anti-EMI filter

Batterv LISN Cable EMI filter First converter
rm\ fm\ AVAV"V /m\ _/Stage o —

INPUT Zo(s) Zi(s) | CONVERTER| OUTPUT

g FILTER - -

s Y [ e Ut | . _/I/_

: : -
7 - ’J’ ” ’l’ ’l’ Controller =
The design of anti-EMI filter aware of input converter impedance allows
reducing x 3 the size of the filter components and avoids instability
@00 000009
E: Viattery, [V] loaqr [MA]  Freq.peak., [kHz] Amplitude, [dBV]
8 0-300 180 -84, -74.8, -65.4
12 0-300 180 -87.2,-77.4, -69.8
24 0-300 180 -77.8,-77.2,-75.4
48 0-300 160 -74.4,-76.4,-71.4
60 0-300 100 -71.4,-63,-57.8

30 1600 10 -47.5



Input current[A]

Advanced control techniques:
Soft-start

Input current without/with soft-start modality (the current peaks, represented

from green signal, are reduced by 3 times).

HV-MOS are realized as multiple parallel devices, activated according to a

proper sequence when starting to avoid high in-rush currents
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Advanced control techniques:
Soft-start

Without soft-start chip can be damaged by high current peaks at device start
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Outline
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Societal, economical and technical challenges of
autonomous/connected vehicles and intelligent transport
systems (ITS)

CAS for remote sensing (Radar, Lidar) in smart vehicle & ITS
Sensing technology & CAS for navigation

CAS for connected cars: V2X receiver in low-cost CMOS

|

CAS for connected cars: cryptographic HW accelerators
eHPC (embedded High Performance Computing) needs of
autonomous and connected cars

New computing arithmetic (Posits) for DNN acceleration
Mixed-signal ICs for smart vehicles

Conclusions



Forward Collision Warning

Smart vehicles and ITS are a huge R&D field for I&M

Minimizing bias and random errors in intertial sensors

=]
| _—

Fusion of Radar, cameras, Lidar & intertial sensors for ADAS
New fusion algorithms, compact and low-cost radar/lidar, secure in-vehicle networks, on-
board MPSoCs in harsh environments, high SIL, HMI & MMI

Sensing technologies for natural Human Machine Interfacing & contactless biometric
measurements for fatigue/attention detection




Conclusions & on-going activities

Forward Collision Warning

V2X (802.11p) and Cellular-V2X (4GLTE/5G) wireless transceivers
robust and secure links, guaranteed QoS --> integrated security, TSCH/FH,
MIMO transceivers, high RX sensitivity, high TX efficiency, beamforming,
opportunities at mm-waves, cybersecurity HW accelerators,

convergence with 5G (www.5gaa.orq)

HW accelerators for ML and DNN for sensor fusion & classification

Innovative acquisition, control and actuations units
for BMS, power converters, distributed sensors/actuators,
3D integration opportunities, EMC/thermal/electrical measurements
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