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Kalray at Glance 

We design processors  
at the heart of new 
intelligent systems 

~85 
Staff Members 
~ 75 engineers & PhDs 

Financial and industrial shareholders 

3 
sites 
Grenoble (France) ,  
Los Altos (USA), Tokyo (Japan) 

23 
patent 
families Pengpai 

~ 48M€ 
raised at IPO in 
June 2018 
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Intelligent Systems 

Cyber-Physical Systems 

• Information processing and 
physical processes are tightly 
integrated 

• Time constraints associated 
with information 
manipulation 

• Distributed systems 

• Functional safety 

• Cyber-security 

Intensive Computing 

• Numerical computing 

• Signal processing 

• Image processing 

• Graph computing 

Artificial Intelligence 

• The science and engineering 
of creating  intelligent 
machines (J. McCarthy, 1956) 

• Mostly represented by the 
Machine Learning field, in 
particular Deep Learning 

• Association causation level: 
“the objective of curve-fitting 
is to maximize fit, while deep 
learning tries to minimize 
over-fit” (J. Pearl 2018) 
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Give computers the ability  to learn without being explicitly programmed (Arthur Samuel, 1959) 

• Rule Extraction Goal is to identify statistical relationships in data 
• Clustering Group similar data together, while increasing the gap between the groups 
• Classification & Regression Map a set of new input data to a set of discrete or continuous 

valued output, respectively 
• Artificial Neural Networks (ANN) General implementation model for nonlinear classifiers, 

trained by using back-propagation algorithms 

Machine Learning (ML) 

𝒀 = 𝒇 𝑊1 × 𝑿𝟏 + 𝑊2 × 𝑿𝟐 + 𝑊3 × 𝑿𝟑  

Weighted sum of inputs 

𝒇( ) is the “activation function” 
𝑓 𝑥 = max 0, 𝑥 , “Rectified Linear Unit” 

𝑓 𝑥 = tanh 𝑥  

… 
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Computational models composed of multiple processing layers to learn representations of data 
with multiple levels of abstraction (Yann Le Cun et al., 2015) 

• Convolutional Neural Networks (CNN) Networks where most filtering operations 
performed by feature maps are discrete convolutions 

 
 
 
 
 
 
 
 
 
 
 

 

• Recurrent Neural Networks (RNN) Networks with  feedback loops 

Deep Learning (DL) 
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Training (datacenter) 

• Learning part or Machine Learning 

- Supervised (classification & regression) 

- Unsupervised (clustering) 

- Reinforcement (decision-making) 

• Off-line processing of large data sets 

• Floating-point 32-bit arithmetic 

Inference (intelligent system) 

• Classification / Segmentation / Detection 

• On-line / Real-time data stream processing 

• Floating-point 16.32-bit or “bfloat16” arithmetic 

• Integer 8.32 arithmetic (quantization) for CNN 

Machine Learning Steps  
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R-CNN, Fast & Faster R-CNN (Girshick & Ren, 2014-2016)  

 

 

 

 

 

Regional CNN and improvements use two steps for object detection 

1) Proposal of candidate regions (initially by segmentation, then by neural computing)  

2) Classification of candidate regions (neural computing and refinment steps) 
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YOLO v1-3 « You Only Look Once » (Redmon 2016-2018) 

Single-step method (unlike « R-CNN » family) 

• A single convolutional network simultaneously 
predicts multiple bounding boxes and class 
probabilities for those boxes 
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Cyber-Security Requirements 

Defense Avionics Automotive 

Hardware root of trust (HSM) ✓ ✓ ✓ 

Authenticated software ✓ ✓ ✓ 

Encrypted boot firmware ✓ ✓ 

Encrypted application code ✓ ✓ ✓ 

Event data record encryption ✓ ✓ 

Secured communication ✓ ✓ ✓ 

Physical attack protection ✓ ✓ 
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Measured boot 

• Enables external agent to attest the platform state after the boot process 

• Provides a secure measurement and reporting chain to external agent 

• Detect modified boot code, settings and boot paths 

• Typically used on servers, by associating UEFI and a TPM chip 

Trusted boot 

• Unbroken chain of trust across all stages of the OS boot: 

- Phase-0 (internal ROM) check platform, validate & launch Phase-1 

- Phase-1 (Flash) initialize peripherals, validate & launch Phase-2 

- Phase-2 (network or disk), validate & launch operating system 

• Typically used on embedded systems 

Secure Boot for Trusted Software Deployment 
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FreeScale QorIQ Trusted Boot 

QorIQ processors target 
consumer, industrial, 
medical, networking 

• OEM public keys and the 
intent to secure (ITS) bit in 
immutable storage (fuses) 

• When the ITS bit is set, 
jump to internal boot ROM 
(IBR) for Phase-0 

• Phase-1 firmware  digitally 
signed using OEM private 
signature key 

• Phase-0 verifies firmware 
signature using public key 
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Homogeneous Multicore Processor 
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Multiple cores sharing a cache-
coherent memory hierarchy 

• Private L1 i-cache and d-cache 

• Shared or clustered L2 cache 

• Shared L3 cache 

Application programming 

• C/C++, Python, Java 

• Pthreads, std::thread, OpenMP 

• Rich operating system (Linux) 

Application partitioning 

• Virtual machine monitor 
https://insights.sei.cmu.edu/sei_blog/2017/08/multicore-processing.html 



Multiple ‘Compute Units’ connected 
by a network-on-chip (NoC) 

• Group of cores + DMA engine 

• Scratch-pad memory (SPM) 

• Software-managed caches 

• Local cache coherency 

SW26010 Manycore processor 

• Node of the Sunway TaihuLight  
supercomputer (#1 TOP 500 in 2016) 

• 4 ‘core groups’ with MPE core, CPE 
core cluster, collective DMA engine 

• 64KB SPM per CPE core  

Manycore Processors 
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Z. Xu, J. Lin, S. Matsuoka, «Benchmarking SW26010 Many-Core Processor» 
IPDPS 2017  



Classic GPGPU: NVidia Fermi architecture 

• GPGPU ‘compute units’ are called Streaming Multiprocessors (SM) 

• Each SM comprises 32 ‘streaming cores’ or  ‘CUDA cores’ that 
share a local memory, caches and a global memory hierarchy  

• Threads are scheduled and executed atomically by ‘warps’, which 
execute the same instruction or are inactive at any given time 

• Hardware multithreading enables warp execution switching on 
each cycle, helping cover memory access latencies 

GPGPU programming models (CUDA, OpenCL) 

• Each SM executes ‘thread blocks’, whose threads may share data 
in the local memory and access a common memory hierarchy 

• Synchronization inside a thread block by barriers, local memory 
accesses, atomic operations, or shuffle operations (NVIDIA) 

• Synchronization between thread blocks through host program  or 
global memory atomic operations in kernels 

GPGPUs as Manycore Processors (NVIDIA) 
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NVidia Volta architecture 

• 64x FP32 cores per SM 

• 32x FP64 cores per SM 

• 8x Tensor cores per SM 

Tensor core operations 

• Tensor Core perform D = A x B + C, where A, B, C 
and D are matrices 

• A and B are FP16 4x4 matrices 

• D and C can be either FP16 or FP32 4x4 matrices 

• Higher performance is achieved when A and B 
dimensions are multiples of 8 

• Maximum of 64 floating-point mixed-precision 
FMA  operations per clock 

GPGPU Tensor Cores for Deep Learning (NVIDIA) 
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Restrictions of GPGPU programming 

• CUDA is a proprietary programming environment 

• Writing OpenCL programs implies writing host code and device 
code, then connecting them through a low-level API 

• GPGPU kernel programming lacks standard features of C/C++, 
such as recursion or accessing a (virtual) file system 

Performance issues with ‘thread divergence’ 

• Branch divergence: if...then...else construct will force all threads 
in a warp to execute both the "then" and the "else" path 

• Memory divergence: when hardware cannot coalesce the set of 
warp global memory accesses into one or two L1 cache blocks 

Time-predictability issues 

• Dynamic allocation of thread blocks to SMs 

• Dynamic warp scheduling  and out-of-order execution on a SM 

Limitations of GPGPUs 

Warp Scheduler 

Intra-Warp 
Coalescer 

Load/Store Unit 

to L2, DRAM 

Load 

Group by 
cache 

line 

Access
Cache 
Lines 

L1 Cache 

MSHR MSHR MSHR MSHR 

Memory access coalescing (Kloosterman et al.) 
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Mapping Intelligent System Functions to Compute Units 

split in 2x8-lane 

R 

R 

R 

R 

Hard real-time application 

Embedded HPC 

Rich OS environment 

Secured communications 

Machine Learning 

Sensors 

Network 
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Kalray’s MPPA® Manycore Architecture 

MPPA® (Massively Parallel Processor Array) Platform 

Hardware 

Software 

Manycore CPU architecture 
Compute clusters of 16 high-performance CPU cores with local memory 

DSP-like timing predictability 
‘Fully timing compositional’ cores for accurate static timing analysis 
Service guarantees of local memory system and network-on-chip  

FPGA-like I/O capabilities 

CPU programming 
Standard C/C++/OpenMP/OpenCL, OpenVX 
Library code generators (MetaLibm, KaNN) 
Model-based (SCADE Suite®, Simulink®) 



MPPA® Processor Family and Roadmap 

MANYCORE TECHNOLOGY THAT ENABLES PROCESSOR OPTIMIZATION 
BASED ON EVOLVING MARKET REQUIREMENTS 

 

BOSTAN COOLIDGE -1 COOLIDGE -2 Dx 

PROCESS 28 nm 16 nm 16 nm  12 nm or 7nm  

PERFORMANCE 
1 DL TOPS 

700 MFLOPS SP 

24 DL TOPS  
1 TFLOPS SP 
3 TFLOPS HP 

48 DL TOPS / 96 TDL  OPS 100 TOPS / 200 TOPS 

USE 
Boards SC (40G) 

Prototypes 

Boards and storage chip 
controllers (100G) 

Accelerator  
intelligent car 

Qualification Car 
Market DC - NFV 

DC 

CONSUMPTION (WATTS) 8W – 25W 5W – 15W 5W – 20W 2W – 10W 

  2018 2019 2020 2021 

COMMERCIAL LAUNCH 

UNDER DEVELOPMENT UNDER DEFINITION 
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MPPA3-80 Processor (TSMC 16FFC, 1.2GHz) 
1TFLOPS FP32, 3TFLOPS FP16.32, 24 DLTOPS INT8.32 

6-ISSUE VLIW CORE COMPUTE CLUSTER COOLIDGE PROCESSOR 

5 compute clusters at 1200 MHz 
2x 100Gbps Ethernet, 16x PCIe Gen4 

16+1 cores, 4 MB local memory 
NoC and AXI global interconnects 

64x 64-bit register file 
128MAC/c tensor coprocessor 
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Network-on-Chip for Global Interconnects 

NoC as generalization of busses 

• Connectionless 

• Address-based transactions 

• Flit-level flow control 

• Implicit packet routing 

• Inside a coherence domain 

• Reliable communication 

• Coherency protocol messages 

• Coordinate with DDR memory controller front-
end (Ex. Arteris FlexMem Memory Scheduler) 

NoC as integrated macro-network 

• Connection-oriented 

• Stream-based transactions 

• [End-to-end flow control] 

• Explicit packet routing 

• Across address spaces (RDMA) 

• [Packet loss or packet reordering] 

• Traffic shaping for QoS (application of DNC) 

• Terminate macro-network (Ethernet, InfiniBand) 

• Support of multicasting 
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MPPA3 Global Interconnects 

RDMA NoC 

AXI Fabric 

… 
… 
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MPPA3 NoC architecture 

• Wormhole switching with source routing 

• 2 virtual  channels, 4x TX DMA channels 

• RDMA, remote queues, remote atomics 

• 128-bit flits, up to 17 flits/packet (256B payload) 

4x 25Gbps Ethernet lanes reused for NoC extension 

• NoC packet encapsulation into IEEE 802.1Q standard for VLAN 

• Designed for direct connections between 2 to 4 chips (using FEC) 

• VCs map to IEEE 802.1Qbb Priority-based Flow Control (PFC) classes 

MPPA3 RDMA NoC 

C4 

C1 

C3 

C2 
C0 

ETH 

C4 

C1 

C3 

C2 
C0 

ETH 

25GbE  

100GbE 

100GbE 

 

MAC dst 

6 bytes 

MAC src 

6 bytes 

VLAN etype 

0x8100 

2 bytes 

VLAN TCI 

PFC (3 bits) / CFI (1 bit) / 

NoC pkt nb (12 bits) 

2 bytes 

NoC pkt0 NoC pkt1 

NoCX etype 

0xB000 

2 bytes 

FCS 

4 bytes 

MPPA3-80 
Processor 
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MPPA3 AXI Fabric 

Deficit Round-Robin (DRR) Arbitration 

• Assing a ‘quantum’ of flits 𝑄1 … 𝑄𝑛 to each input  

• Associate a ‘deficit counter’ in flits 𝐷𝐶1 … 𝐷𝐶𝑛 to 
each input  

• Iterate on the non-empty inputs; for each input 𝑖: 

1. 𝐷𝐶𝑖  += 𝑄𝑖  

2. Transfer packets to output while cumulative flit 
count ≤ 𝐷𝐶𝑖  

3. 𝐷𝐶𝑖  -= transferred cumulative flit count 

4. 𝐷𝐶𝑖  := 0 if input is empty 
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MPPA3 Compute Cluster 

8K @ 

256bit  data 
32bit  ECC 

x 16  banks 

bank 0 

x 16 x 8  

PE Core 0 PE Core 15 DMA AXI slave 

256 bits 256 bits 128 bits 128 bits 

Periph 
Registers 

DMA 
APIC 
DSU 

Periph 

8K @ 

256bit  data 
32bit  ECC 

bank 15 

Security 
Acc 0 

AES / GCM 
Hashing 

Periph 

Secure 
Bank 

Periph 

Security 
Acc 1 

AES / GCM 
Hashing 

Periph 

Security & Safety  

256 bits 

NON SECURE ZONE SECURE ZONE 

RM Core 

256bit  data 
32bit  ECC 
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MPPA3 Memory Hierarchy 

VLIW Core L1 Caches 
• 16KB / 4-way LRU instruction cache per core 

• 16KB / 4-way LRU data cache per core 

• 64B cache line size 

• Write-through,  write no-allocate (write around) 

• Coherency configurable across all L1 data caches 

Cluster L2 Cache & Scratch-Pad Memory 

• Scratch-pad from 2MB to 4MB  

• 16 independent banks, full crossbar 

• Interleaved or banked address mapping 

• L2 cache from 0MB to 2MB 

• 16-way Set Associative  

• 256B cache line size 

• Write-back, write allocate 

2x DDR4 64-bit / 
2x LPDDR4 64-bit 

D$ I$ D$ I$ x 16 

16 PE Cores 

Scratch-Pad L2 Cache 

Cluster 

L1 cache 
coherency 

L2 cache 
coherency 

enable 
/disable 

enable 
/disable 
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MPPA3 64-Bit VLIW Core 

Vector-scalar ISA 

• 64x 64-bit general-purpose registers 

• Operands can be single registers, register pairs (128-
bit) or register quadruples (256-bit) 

• Immediate operands up to 64-bit, including F.P. 

• 128-bit SIMD instructions by dual-issuing 64-bit on 
the two ALUS or by using the FPU datapath 

FPU capabilities 

• 64-bit x 64-bit + 128-bit → 128-bit 

• 128-bit op 128-bit → 128-bit 

• FP16x4 SIMD 16 x 16 + 32 → 32 

• FP32x2 FMA, FP32x4 FADD, FP32 FMUL Complex 

• FP32 Matrix Multiply 2x2 Accumulate 
K1C VLIW CORE PIPELINE 
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MPPA3 Tensor Coprocessor 

Extend VLIW core ISA with extra issue lanes 

• Separate 48x 256-bit wide vector register file 

• Matrix-oriented arithmetic operations (CNN, CV …) 

Full integration into core instruction pipeline 

• Move instructions supporting matrix-transpose  

• Proper dependency / cancel management 

Leverage MPPA memory hierarchy 

• SMEM directly accessible from coprocessor 

• Memory load stream aligment operations 

Arithmetic performances 

• 128x INT8→INT32 MAC/cycle 

• 64x INT16→INT64 MAC/cycle 

• 16x FP16→FP32 FMA/cycle 
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256-bit 

General 
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Vector 
Registers 

Execution 
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 Basic Linear 
Algebra Unit 

256-bit 

Control 



MPPA3 Coprocessor Matrix Operations 

• INT16 to INT64 convolutions: 

(4x4)int16 . (4x4)int16 += (4x4)int64 

 

• INT8 to INT32 convolutions 

(4x8)int8 . (8x4)int8 += (4x4)int32 

 

AxB += C AxB += C 
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KaNN (Kalray Neural Network) Inference Code Generator 

KaNN 
Optimizer 

KaNN 
Code Generator 

 
 

MPPA® platform 
 
 
 
 
 
 

Stream 
Sources 

Output 
/Display 

KaNN 

INPUT DATA 
• Camera 
• Images 
• Lidar 

RESULTS  
• Classification 
• Segmentation 
• Detection 

Trained  
Neural Network 

Import 
Model 

Deploy 
Runtime 
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Compute one DNN layer at a time in topological sort order of the network 

Decompose NxN convolutions as accumulations of N2 1x1 convolutions  

• Pixels  layout is sequential along depth (channels) for dense memory accesses 

CNN Inference on a MPPA Processor (1) 

st
ri

d
e

 

stride 

𝑝1
1 ⋯ 𝑝1

𝑑2
′

⋮ ⋱ ⋮

𝑝𝑑1

1 ⋯ 𝑝𝑑1

𝑑2
′

 

𝑝1
1 ⋯ 𝑝1

𝑑2

⋮ ⋱ ⋮

𝑝𝑑1

1 ⋯ 𝑝𝑑1

𝑑2
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Distribute activations across clusters SPMs, splitting along spatial and/or depth dimensions  

• Spatial dimension splitting requires that the full set of parameters be loaded from external memory 

• Channel dimension splitting requires access to the whole input image and a subset of the parameters 

• Leverage NoC multicasting of parameters from external memory in case of spatial dimension splitting 

CNN Inference on a MPPA Processor (2) 

3 3 𝑑𝑖𝑛 [𝑑𝑜𝑢𝑡] 3 3 𝑑𝑖𝑛 [𝑑𝑜𝑢𝑡/4] 
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SPMD (Single Program Multiple Data) execution that leverages NoC multicasting  of parameters 

• Build a local memory buffer allocation and task execution schedule in each cluster 

• Overlap parameter transfers from external memory  with computations on local memory 

• Allocation and scheduling are performed on the CNN network 

- an image corresponds to pre and post tasks,  

- layer compute operations corresponds to a malleable task 

- pre tasks load biases from external memory into the local memory buffer 

 

 

 

 

 

 

CNN Inference on a MPPA Processor (3) 

pre 
post 

operation 

operation 

pre 
post 

operation 

parameters 

parameters parameters 



For layers where images do not fit on-chip, stream sub-tiles from DDR memory 

• All clusters remote write their tile of output image to DDR memory, then enter a synchronization barrier 

• After clusters leave the barrier, they pipeline the remote read from DDR / operate / put to DDR of sub-tiles 

• Larger sub-tiles factor more control overhead but reduce the amount of pipelining 

CNN Inference on a MPPA Processor (4) 

post 

operation 

parameters 

get 

post 

get 

operation 

get 

post 

operation 

Input image in DDR 

Sub-tile 

Tile 
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Deep Learning Inference on Caffe GoogLeNet 

51 

77 

100 

2500 

3000 

6000 

20nm GPU

BOSTAN @ 600MHz

16nm GPU

12nm GPU

COOLIDGE 80 @ 600Mhz

COOLIDGE 80 @ 1200MHz
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Batch 1 performances in Frames per Second (FPS) 
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SCADE Suite Multi-Core Code Generation Flow 

Partitioning 
Information 
Separate from 
model for re-
targeting 

Model to C Mapping 

Target C compiler 

Scheduling 
ECU/Core 
Allocation 

C 

main+config 

Target integration 

SCADE Suite for Multi-Core 

Application code gen 
Allocation to workers 

SCADE integration toolbox 
SCADE Multi-Core toolbox 

WCET 
info 

(WCET 
Tool) 

Application C code 

Scade 6 application 

Kalray 

MPPA® 
Platform 

Errors 
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ROSACE Demonstration Application 

• Simplified controller for the longitudinal motion of a medium-range civil 
aircraft in en-route phase: cruise and change of cruise level sub-phases 
 
 
 
 
 
 
 
 

 
• Original application has 3 harmonic periods: F, 2F, 4F 
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SCADE Suite MCG Code Generation (1) 

• MCG generates a set of tasks communicating trough one-to-one channels: 
• The root task executes the root operator of the input model 
• One task for each operator instance annotated in the input model 
• Each task receives data on an input channel, calls the operator and then sends 

the result on an output channel 
• Channels are single-producer, single-consumer FIFOs of size one 

 
• The platform provider (Kalray) integrates MCG generated code by: 

• Providing workers, each able to execute sequentially a set of tasks 
• Implementing communication channels with their send/recv methods 
• Applying the prescribed scheduling and mapping of tasks to workers 
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SCADE Suite MCG Code Generation (2) 

• Exploit the MPPA cluster configuration for ‘high-integrity’ execution 
• Enable the cluster local memory mapping of one bank per core 

 
 
 
 
 
 
 

• Precisely compute the task WCETs (Worst-Case Execution Times) 
• Static analysis or measurement for the WCET of tasks in isolation 
• Refine the WCET with interferences using fixed-point [Rihani RTNS'16] 

Core 0 
BK 
0 

Core 1 
BK 
1 

Core 15 
BK 
15 

... 

RR 

RR 

RR 

Rosace 

az_filter 

Core 0 

Core 4 

Rosace 

Bank 4 

Bank 0 
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MPPA® Embedded Platform 

Hard Real-Time 
(high-integrity) 

Soft Real-Time 
(time-predictable) 

Best Effort 
(high-performance) 

OpenMP 
OpenCL 
OpenVX 

BLAS, FFT, CV 
Deep Learning 

Model-based with time 
SCADE (+ Asterios) 

(Simulink + LET) 

Embedded Linux 
(PREEMPT RT) 

 

ClusterOS  Kalray 
OSEK/VDX  eSOL 

SCADE  Esterel Tech. 
Asterios Krono-Safe 

FreeRTOS  Kalray 

POSIX PSE52 with 
usage domain 

restrictions 
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Autonomous Driving System 

INPUT ANALYSIS OUTPUT 

Representation 

Segmentation 

Sensor Fusion 

Object Detection 

Object Tracking 

Lidar 

Camera 

Stereo Cam. 

LR Radar 

Motion planning 
 

Obstacle 
avoidance 

 
Replanning 

Path tracking 
 

Trajectory 
generation and 

tracking 
 

Reactive control 

Sensors Perception Decision Control Actuators 

SR Radar 

GNSS Localization 
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KaNN Integration into  
3rd Party Autonomous Software Platforms  

MPPA2 Processing of  
BAIDU Apollo (Perception) 

MPPA2 Processing of  
Autoware (Perception) 
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Kalray News from CES 2019 (EETimes) 

The Dutch semiconductor company revealed at the 
Consumer Electronics Show here that it has chosen 
a French startup called Kalray to fill in a void 
created by Qualcomm when it walked away last 
summer from a $44 billion deal to buy NXP. 

Under their new partnership, Kalray and NXP are 
developing a central computing platform that 
combines Kalray’s MPPA processors with NXP’s 
S32 processors. 

At CES, the companies demonstrate Kalray’s MPPA 
and NXP BlueBox running together on Baidu’s 
Apollo open automotive software. 
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Mont-Blanc 2020 and EPI Projects 

  ACCEL. 
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OCEAN 12 ECSEL Project 
Opportunity to Carry European Autonomous driviNg further with 

FDSOI technology up to 12nm node 
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OCEAN12 Work Package 3 (IP Factory) 

Task 3.1: High-Performance Computing & Vision Signal Processing (Kalray, CEA, ISD, M3S) 

• MPPA Cluster tile IP designed and running on FPGA emulation (Altera Stratix-10) 

• Running deep learning inference (KaNN) and computer vision (dense Optical Flow) 
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CPU-based manycore accelerators 

• C/C++/POSIX/OpenMP/OpenCL programmability 

• Energy efficiency & time predictability 

Kalray manycore accelerators 
• Learn from GPGPU and computer vision processors 

• High compute intensity comes from 2D operations 

• Leverage local memories with RDMA engines 

Programming environments 
• Optimized application library generators 

• Deep learning and graph-based frameworks 

• High-performance using OpenCL and OpenMP 

• Model-based programming for safety-critical 

European Projects Mont-Blanc 2020, EPI and OCEAN12 

Conclusions 



Conclusions 

SAFETY SECURITY DETERMINISM PERFORMANCE STANDARDS 

• Hardware partitioning 

• Software partitioning 

• Hypervisor support 

• ISO26262 ASIL B/C 

• Hardware root of trust 

• Secure boot  

• Authenticated debug 

• Trusted execution 
environment 

• Encrypted application 
code 

• Fully timing 
compositional cores 

• Banked on-chip memory 

• Interference-free local 
interconnect 

• Network-on-Chip (NoC) 
service guarantees 

• High-end floating-point 
and bit-level processing 

• DSP-style energy 
efficiency 

• Scalability by 
replicating clusters 

• Standard programming 
environments (C/C++, 
OpenMP, POSIX, 
OpenCL, OpenVX) 

• Standard development 
tools (Eclipse, GCC, GDB, 
LLVM, Linux) 

SCALABLE 
• Adaptability to E/E architecture  

• Low range to high range car lines 

• Allow distribution of functions 
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THANK YOU 
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