FFTW3:LEVERAGING THE
SCALABLE VECTOR EXTENSION (SVE)

SEPTEMBER 2019

European
Processor
Initiative

epl

European
Processor
Initiative

epl

FRAMEWORKPARTNERSHIP AGREEMENT IN EUROPEAN
LOW-POWER MICROPROCESSOR TECHNOLOGIES

THIS PROJECT HAS RECEIVED FUNDING FROM THE EUROPEAN UNION'S HORIZON 2020 RESEARCH AND INNOVATION
PROGRAMME UNDER GRANT AGREEMENT NO 826647

Copyright © European Processor Initiative 2019. Event/Recipient/Place/Date

“FASTEST FOURIER TRANSFORM IN THE WEST"

= FFTW, “Fastest Fourier Transform in the West”, is a library implementing
Fourier Transform and approximations thereof and self-adapt to the
hardware

= |t has been around for over two decades

= Widely in use in the HPC community
" Intel’s MKL include an FFTW-compatible interface

= Version 3 of the library, FFTW3, was designed in the early 2000s, and
added support for abstract SIMD support

= QOriginally SSE/SSE2 (x86) & AltiVec (PowerPC)
= Since then, support was added for NEON, AVX*, etc.

Copyright © European Processor Initiative 2019. Event/Recipient/Place/Date

European
Processor
Initiative

FFTS IN FFTW3

= FFTW3 user interface has two stages = This data structure includes

1. “Planning” the transform 1. Small, executable transforms called
“codelets” whose code is generated
by a specialized code generator,
= The "plan”is an executable data “genfft”

structure that accepts the input data > Algorithms to combine those

and computes the desired DFT [1] “codelets” in larger transforms, such
as “Cooley-Tukey”

2. “Executing” the transform

[17 M. Frigo and S. G. Johnson, "The Design and Implementation of - | N FFTWB, th e “COd e LetS” cdan be
FFTW3," in Proceedings of the IEEE, vol. 93, no. 2, pp. 216-231, Feb. 2005. .
doi: 10.1109/JPROC.2004.84030| desi gn ed for SIMD

Copyright © European Processor Initiative 2019. Event/Recipient/Place/Date

European
Processor
Initiative

SIMD CODELETS

= “genfft” uses multiple algorithms to
generdate “codelets”

= Small full FFTs, Cooley-Tukey,
Bluestein, Rader, ...

= [t can generate multiple variants for
a single size of a single algorithm

= e.g. favoring Fused-Multiply-Add
(FMA) or not, etc.

Copyright © European Processor Initiative 2019. Event/Recipient/Place/Date

One possible option is to generate
SIMD code

This code is purely abstract, it
doesn’t implement code for any
architecture

The code uses C macros as
placeholder for actual computations

An “implementation header” is
needed to describe a specific
architecture and implement the
MAcros

European
Processor
Initiative

THE IMPLEMENTATION HEADER

" The “implementation header”
implements the required macro (or
function) to support an SIMD
architecture

= |t specifies register width, how to
compute/load/store vectors, etc.

= That first one — register width — is going
to haunt us later...

= What we need for SVE is “only” the
implementation header

Copyright © European Processor Initiative 2019. Event/Recipient/Place/Date

AVX-512

/* SIMD complex vector length - FP64, FP32
*/
#define VL DS (4, 8)

/* permute the Real and Imaginary part of
each complex */

#define FLIP RI(x) SUFF(mm512 shuffle) (x,
x, DS(0x55,0xB1l))

/* element-wise FMA */

#define VFMA(a, b, c) SUFF(mm512 fmadd) (a,
b, c)

/* similar, with a == ‘i’ */

#define VFMAI (b, c)
SUFF (_mm512 fmaddsub) (VLIT1(1.), c,
FLIP RI (b))

| —

FFTW3 CODE FLOW

The codelet generator “genfft”
generates C codelets with SIMD macro

And regular C-only, scalar codelets

The codelets include the
implementation header file to produce
SVE binary codelets

The regular C codelet are compiled
normally

The SVE binary codelets & other
codelets are combined with the

infrastructure library to produce the
SVE-enabled library

FFTW3
codelet

generator

!

C codelet
with SIMD
macros

European
Processor
epl |

SVE
SIMD
implementation

Copyright © European Processor Initiative 2019. Event/Recipient/Place/Date

C codelets

||
1
JJ SVE codelets

Initiative

header file

FFTW3
base library

J

-

performance

.)
High-

dynamic FFT
implementation

European
Processor
Initiative

USING SVE FOR FFTW3 SIMD

= SVE has one specificity not in SSE, AVX, = SVE includes specific instructions to
AltiVec, itis scalable support complex arithmetic, the basis for

= That means, the vector width is not FFTWS3's computations

known at compile time — it can be = [t should help with the implementation of
anything from 128 to 2048 bits, in steps some of the implementation macro
o128 bits = SVE also has lane masking, which is

m There is no way to define the VL macro useful for auto-vectorization but can
the way it is done for other SIMD ISA also be useful in our case...

B And the value is hardwired in other m But sometimes must use a mask as there

places in the infrastructure as well... IS no unmasked version... and vice versa

Copyright © European Processor Initiative 2019. Event/Recipient/Place/Date 8

European
Processor
Initiative

SVE FOR FFTW3,
FIRST VERSION (1)

= The easiest way to deal with the
scalability problem is to ignore it...

1. Assume a vector width, such as 512
bits

= e.g. for the Fujitsu AB4FX

2. At runtime, in the infrastructure, only
enable the codelets if the hardware
vector width matches the assumed

vector width zeroing masked

values to avoid false
dependencies

Copyright © European Processor Initiative 2019. Event/Recipient/Place/Date

SVE

/* FIXME: this hardwire to 512 bits */
#define VL DS (4, 8)

/* permute the Real and Imaginary part
of each complex */

#define FLIP RI (x)
TYPE (svtrnl) (TYPE (svtrn2) (x,x) ,x)

/* element-wise FMA */

#define VFMA (a

TYPESUF (svmad @@ :

) (ALLA,c,b,90)

all-1 mask
Macro

dedicated addition with 90°
complex rotation, i.e.
multiplications by ‘I ¢

L ———

SVE FOR FFTWS3,
FIRST VERSION (2)

This code will only be enabled when
the hardware register width is
exactly X bits

Cannot work on smaller register, as
some macro loads load values from
array — and the array content is
register width-dependent

Could work with larger register if we
used masking...

Implemented for 256 & 512 bits using
Arm C Language Extension (ACLE)

Copyright © European Processor Initiative 2019. Event/Recipient/Place/Date

European
Processor
Initiative

= Code is tested using the Arm
Instruction Emulator for validity

=" Needs to disable performance
measurement as emulated SVE is
much slower than NEON!

= Also somewhat tested using the
QEMU & GEMS simulators

= More accurate but even slower

= Timing is also somewhat
questionable at the moment

= Hopefully, hardware access soon ;-)

https://github.com/rdolbeau/fftw3/tree/arm-sve

European
Processor
Initiative

SVE FOR FFTW3,
SECOND VERSION (1)

= Makes the implementation more
tolerant to register width

1. Assume a vector width, such as 512
bits, and make the code works for
register at least as wide

= Masking is great!

2. At runtime, in the infrastructure, only
enable the codelets if the hardware
vector width is equal or larger than
the assumed vector width

Copyright © European Processor Initiative 2019. Event/Recipient/Place/Date

SVE, masked

/* FIXME: this hardwire to 512 bits */
#define VL DS (4, 8)

/* permute the Real and Imaginary part
of each complex */ unchanged

full width (no
TX) ,x)predicated
7 variant)

#define VFMA (a, b,

TYPESUF (svmad, z) all-1 mask
macro for first
* imi j == ‘i’ *
/* similar, with a i / 512 bits. 0
#define VFMAI (b, c) everywhere

TYPESUF (svcadd, z) (MASKA,c,b,90) ¢se

n

L ———

SVE FOR FFTW3,
SECOND VERSION (2)

European
Processor
Initiative

= Same testing as for the fixed-width

version
= This code will only be enabled when | |
the hardware register width is at = Requires Arm HPC Compiler 19.3 or
least X bits newer
= Implemented for 128, 256 & 512 bits " Small code generation bug in 19.2
and earlier

= 512 bits hardware can use all three
groups, in case shorter vector are
somehow faster

= Similar binary output to the first
version, more versatile at runtime

= Cache management, small dimension(s),
etc.

= FFTW3 is self-tuning, more options is
better — but planning is slower

Copyright © European Processor Initiative 2019. Event/Recipient/Place/Date

https://github.com/rdolbeau/fftw3/tree/arm-sve-alt

European
Processor
Initiative

LESSONS LEARNED

= The Scalable Vector Extension is m Scalability is new, and code
nice to work with © infrastructure may need to adapt
= But ACLE so far only available in Arm = e.g. FFTW3 would require changes
HPC Compiler at a higher level, as it expects fixed-
= All the required features are there: amount-of-work codelet at this time
computations — including complex = Other algorithm much more
arithmetic, data management, amenable, e.g. Chacha20 crypto
masking, etc. algorithm implemented in the
= Compiler are starting to auto- Supercop benchmark

vectorize using SVE, no need to
code by hand for many codes

Copyright © European Processor Initiative 2019. Event/Recipient/Place/Date

crypto stream/chacha20/dolbeau/arm-sve

https://bench.cr.yp.to/supercop.html

| ——

European

ep |
EPI PARTNERS

Initiative
-~ . Barcelona
BMW . & - 5 |
GROU =@ o InTineon upercomputing
P e ’ geen’t:(t)elv';cional de Supercomputacion

) kALRAY @) JULICH Gemidynam’u':s TECNICO. = Fraunhofer

Forschungszentrum silicon design and verification services

@ E 4 CINECA
F—
| =
B COMPUTER
ALMA MATER STUDIORUM CHALMERS UNIVERSITA DI PISA I EALIY ENGINEERING

UNIVERSITA DI BOLOGNA

%“RA " g éX'FDL .
XIT @ i .3

Karlsruher Institut fir Technologie PROVE & RUN

Copyright © European Processor Initiative 2019. Event/Recipient/Place/Date

14

